Polarization customization in all-dielectric terahertz polarizers

被引:0
作者
Hu, Susu [1 ,2 ]
Lu, Yongzheng
Huang, Shaoqi [1 ]
Dai, Bo [1 ]
Wei, Li [1 ]
Zhuang, Songlin [1 ]
Zhang, Dawei [1 ]
机构
[1] Univ Shanghai Sci & Technol, Engn Res Ctr Opt Instrument & Syst, Shanghai Key Lab Modern Opt Syst, Minist Educ,Lab Modern Opt Syst, Shanghai 200093, Peoples R China
[2] Changzhou Inst Technol, Sch Photoelect Engn, Changzhou 213032, Peoples R China
来源
OPTICS EXPRESS | 2024年 / 32卷 / 27期
基金
中国国家自然科学基金;
关键词
PHASE DISCONTINUITIES; BEAM GENERATION; METASURFACES;
D O I
10.1364/OE.541877
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the conventional optical systems, a series of polarizers, e.g., half-wave plates, and quarter-wave plates are used to control polarized wave. Here, we propose an innovative strategy to convert arbitrary polarization states to specific multiple polarization states by applying the cluster composed four meta-atoms on a monolayer all-dielectric metasurface. Two types of functional terahertz metalenses with customized polarization were designed. The first metalens can engender orthogonal circularly polarized waves under unpolarized wave incidence, while the second metalens can generate multiple polarization including co-polarization and cross-polarization to the incidence, the right-hand circular polarization and left-hand circular polarization. We anticipate such polarization customization scheme can be employed to develop various terahertz metalenses for potential applications in the fields of optical communication, optical sensing, biological imaging, and quantum optics. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:47783 / 47799
页数:17
相关论文
共 50 条
  • [1] Hu H., Gan Q., Zhan Q., Generation of a Nondiffracting Superchiral Optical Needle for Circular Dichroism Imaging of Sparse Subdiffraction Objects, Phys. Rev. Lett, 122, 22, (2019)
  • [2] Huo P., Zhang C., Zhu W., Et al., Photonic Spin-Multiplexing Metasurface for Switchable Spiral Phase Contrast Imaging, Nano Lett, 20, 4, pp. 2791-2798, (2020)
  • [3] Rubin N. A., D'Aversa G., Chevalier P., Et al., Matrix Fourier optics enables a compact full-Stokes polarization camera, Science, 365, 6448, (2019)
  • [4] Wang W., Wang J., Zhang T., Et al., All-dielectric metasurfaces for intensity-controllable beam splitting and polarization conversion, J. Phys. D. Appl. Phys, 57, 28, (2024)
  • [5] Ding F., Chen Y., Bozhevolnyi S. I., Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting, Photonics Res, 8, 5, pp. 707-714, (2020)
  • [6] Zijlstra P., Chon J. W., Gu M., Five-dimensional optical recording mediated by surface plasmons in gold nanorods, Nature, 459, 7245, pp. 410-413, (2009)
  • [7] Li X., Lan T. H., Tien C. H., Et al., Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam, Nat. Commun, 3, 1, (2012)
  • [8] Teng J., Hu C., Huang H., Et al., Single-shot 3D tracking based on polarization multiplexed Fourier-phase camera, Photonics Res, 9, 10, pp. 1924-1930, (2021)
  • [9] Komisar D., Kumar S., Kan Y., Et al., Multiple channelling single-photon emission with scattering holography designed metasurfaces, Nat. Commun, 14, 1, (2023)
  • [10] Yue Z., Zheng C., Li J., Et al., A dual band spin-selective transmission metasurface and its wavefront manipulation, Nanoscale, 13, 24, pp. 10898-10905, (2021)