Controlled Synthesis of Iron Oxide Nanoparticles via QBD for Biomedical Applications

被引:0
|
作者
Haghighizadeh, Atoosa [1 ]
Ghadiri, Sima [1 ]
Dadpour, Saba [1 ]
Amirinejad, Mostafa [2 ]
Etemad, Leila [3 ]
Rajabi, Omid [1 ,4 ]
机构
[1] Mashhad Univ Med Sci, Sch Pharm, Dept Pharmaceut Control, Mashhad, Iran
[2] Mashhad Univ Med Sci, Sch Pharm, Dept Pharmaceut, Mashhad, Iran
[3] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Pharmaceut Res Ctr, Mashhad, Iran
[4] Mashhad Univ Med Sci, Pharmaceut Technol Inst, Targeted Drug Delivery Res Ctr, Mashhad, Iran
关键词
Iron Oxide Nanoparticles; Hydrothermal Method; Response Surface Methodology; Nanomedicine; HYDROTHERMAL SYNTHESIS; MAGNETIC-PROPERTIES; TEMPERATURE; SIZE; CHALLENGES; ROLES;
D O I
10.2174/0115734137336579241008054823
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Introduction Iron oxide nanoparticles have gained significant attention in pharmaceutical applications because of their unique properties. The hydrothermal method is employed for the synthesis of iron nanoparticles [IONPs], which offers advantages such as uniform composition and size distribution.Method However, the size and properties of IONPs can be influenced by various factors. In this study, we utilized quality by design [QBD] via response surface methodology to investigate the impact of temperature, time, and pH on the size of hydrothermally prepared IONPs. The optimized synthesis conditions were determined, and the resulting nanoparticles were characterized using techniques such as dynamic light scattering [DLS], scanning electron microscopy [SEM], transmission electron microscopy [TEM], vibrating sample magnetometry [VSM], X-ray diffraction [XRD], and Fourier-transform infrared spectroscopy [FTIR].Results The findings contribute to a better understanding of the controlled synthesis of IONPs and their potential applications in nanomedicine. The XRD characterization revealed that the product was Fe3O4. The FTIR results indicate that Fe3O4 nanoparticles were coated with PEG-400. The SEM and HRTEM images of the Fe3O4 nanoparticles showed that they were spherical and had a well-distributed size with an optimized hydrodynamic size of 65 nm.Conclusion The magnetic properties of the Fe3O4 nanoparticles indicated that they exhibited ferromagnetic properties. These prepared nanoparticles are suitable for biomedical purposes, like serving as contrast agents for magnetic resonance imaging in different cancers and delivering drugs.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Optimisation of aqueous synthesis of iron oxide nanoparticles for biomedical applications
    Bonvin, Debora
    Hofmann, Heinrich
    Ebersold, Marijana Mionic
    JOURNAL OF NANOPARTICLE RESEARCH, 2016, 18 (12)
  • [2] Optimisation of aqueous synthesis of iron oxide nanoparticles for biomedical applications
    Debora Bonvin
    Heinrich Hofmann
    Marijana Mionic Ebersold
    Journal of Nanoparticle Research, 2016, 18
  • [3] Synthesis and characterization of superparamagnetic iron oxide nanoparticles for biomedical applications
    Cano, L. A.
    Cagnoli, M. V.
    Stewart, S. J.
    Cabanillas, E. D.
    Romero, E. L.
    Marchetti, S. G.
    HYPERFINE INTERACTIONS, 2010, 195 (1-3): : 275 - 280
  • [4] Facile Hydrothermal Synthesis and Surface Functionalization of Polyethyleneimine-Coated Iron Oxide Nanoparticles for Biomedical Applications
    Cai, Hongdong
    An, Xiao
    Cui, Jun
    Li, Jingchao
    Wen, Shihui
    Li, Kangan
    Shen, Mingwu
    Zheng, Linfeng
    Zhang, Guixiang
    Shi, Xiangyang
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (05) : 1722 - 1731
  • [5] Magnetic iron oxide nanoparticles for biomedical applications
    Laurent, Sophie
    Bridot, Jean-Luc
    Elst, Luce Vander
    Muller, Robert N.
    FUTURE MEDICINAL CHEMISTRY, 2010, 2 (03) : 427 - 449
  • [6] Iron Oxide Nanoparticles: An Insight into their Biomedical Applications
    Couto, Diana
    Freitas, Marisa
    Carvalho, Felix
    Fernandes, Eduarda
    CURRENT MEDICINAL CHEMISTRY, 2015, 22 (15) : 1808 - 1828
  • [7] Magnetic iron oxide nanoparticles for biomedical applications
    Jiang, Kaiyi
    Zhang, Linlin
    Bao, Gang
    CURRENT OPINION IN BIOMEDICAL ENGINEERING, 2021, 20
  • [8] Recent trends in preparation and biomedical applications of iron oxide nanoparticles
    Meng, Yu Qing
    Shi, Ya Nan
    Zhu, Yong Ping
    Liu, Yan Qing
    Gu, Li Wei
    Liu, Dan Dan
    Ma, Ang
    Xia, Fei
    Guo, Qiu Yan
    Xu, Cheng Chao
    Zhang, Jun Zhe
    Qiu, Chong
    Wang, Ji Gang
    JOURNAL OF NANOBIOTECHNOLOGY, 2024, 22 (01)
  • [9] Magnetic Iron Oxide Nanoparticles: Synthesis, Characterization and Functionalization for Biomedical Applications in the Central Nervous System
    Ansari, Shoeb Anwar Mohammed Khawja
    Ficiara, Eleonora
    Ruffinatti, Federico Alessandro
    Stura, Ilaria
    Argenziano, Monica
    Abollino, Ornella
    Cavalli, Roberta
    Guiot, Caterina
    D'Agata, Federico
    MATERIALS, 2019, 12 (03)
  • [10] Synthesis and design of biologically inspired biocompatible iron oxide nanoparticles for biomedical applications
    Demirer, Gozde S.
    Okur, Aysu C.
    Kizilel, Seda
    JOURNAL OF MATERIALS CHEMISTRY B, 2015, 3 (40) : 7831 - 7849