Multi-level data assimilation for ocean forecasting using the shallow-water equations

被引:0
作者
Beiser, Florian [1 ,2 ]
Holm, Havard Heitlo [1 ]
Lye, Kjetil Olsen [1 ]
Eidsvik, Jo [2 ]
机构
[1] SINTEF Digital, Dept Math & Cybernet, Forskningsveien 1, N-0373 Oslo, Norway
[2] NTNU, Dept Math Sci, Alfred Getz Vei 1, N-7034 Trondheim, Norway
关键词
Data assimilation; Ensemble Kalman filter; Multi-level Monte Carlo; Shallow-water model; Drift trajectory forecasting; FINITE-VOLUME METHODS; MONTE-CARLO; CONSERVATION-LAWS; CALIBRATION; TOPOGRAPHY; FRAMEWORK; SYSTEMS; SURFACE;
D O I
10.1016/j.jcp.2025.113722
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Multi-level Monte Carlo methods have become an established technique in uncertainty quantification as they provide the same statistical accuracy as traditional Monte Carlo methods but with increased computational performance. Recently, similar techniques using multi-level ensembles have been applied to data assimilation problems. In this work we study the practical challenges and opportunities of applying multi-level methods to complex data assimilation problems, in the context of simplified ocean models. We simulate the shallow-water equations at different resolutions and employ a multi-level Kalman filter to assimilate sparse in-situ observations. In this context, where the shallow-water equations represent a simplified ocean model, we present numerical results from a synthetic test case, where small-scale perturbations lead to turbulent behaviour, conduct state estimation and forecast drift trajectories using multi-level ensembles. This represents a new advance towards making multi-level data assimilation feasible for real-world oceanographic applications.
引用
收藏
页数:25
相关论文
共 50 条
[21]   CODAR data assimilation into an integrated ocean forecasting system for the Brazilian Southeastern coast [J].
Toste, Raquel ;
Bock, Carina Stefoni ;
da Silva, Mauricio Soares ;
Moraes, Nilton Oliveira ;
Soares, Anderson Elias ;
Nehme, Douglas Medeiros ;
Assad, Luiz Paulo de Freitas ;
Landau, Luiz ;
Barreto, Fernando ;
da Silva Junior, Carlos Leandro .
OCEAN MODELLING, 2024, 188
[22]   Lie symmetries and singularity analysis for generalized shallow-water equations [J].
Paliathanasis, Andronikos .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2020, 21 (7-8) :739-747
[23]   Notes on RKDG Methods for Shallow-Water Equations in Canal Networks [J].
Briani, Maya ;
Piccoli, Benedetto ;
Qiu, Jing-Mei .
JOURNAL OF SCIENTIFIC COMPUTING, 2016, 68 (03) :1101-1123
[24]   VARIATIONAL DERIVATION OF THE GREEN-NAGHDI SHALLOW-WATER EQUATIONS [J].
Ionescu-Kruse, Delia .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2012, 19 :1-12
[25]   A well-balanced scheme for the shallow-water equations with topography [J].
Michel-Dansac, Victor ;
Berthon, Christophe ;
Clain, Stephane ;
Foucher, Francoise .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2016, 72 (03) :568-593
[26]   High-order finite-volume methods for the shallow-water equations on the sphere [J].
Ullrich, Paul A. ;
Jablonowski, Christiane ;
van Leer, Bram .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (17) :6104-6134
[27]   Conventional versus pre-balanced forms of the shallow-water equations solved using finite-volume method [J].
Lu, Xinhua ;
Xie, Shengbai .
OCEAN MODELLING, 2016, 101 :113-120
[28]   Water Level Simulation in River Network by Data Assimilation Using Ensemble Kalman Filter [J].
Chen, Yifan ;
Cao, Feifeng ;
Meng, Xiangyong ;
Cheng, Weiping .
APPLIED SCIENCES-BASEL, 2023, 13 (05)
[29]   Multi-level emulation of complex climate model responses to boundary forcing data [J].
Tran, Giang T. ;
Oliver, Kevin I. C. ;
Holden, Philip B. ;
Edwards, Neil R. ;
Sobester, Andras ;
Challenor, Peter .
CLIMATE DYNAMICS, 2019, 52 (3-4) :1505-1531
[30]   A multi-GPU shallow-water simulation with transport of contaminants [J].
Vinas, M. ;
Lobeiras, J. ;
Fraguela, B. B. ;
Arenaz, M. ;
Amor, M. ;
Garcia, J. A. ;
Castro, M. J. ;
Doallo, R. .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2013, 25 (08) :1153-1169