Sodium channels Nav1.7, Nav1.8 and pain; two distinct mechanisms for Nav1.7 null analgesia

被引:0
|
作者
Iseppon, Federico [1 ]
Kanellopoulos, Alexandros H. [1 ]
Tian, Naxi [1 ]
Zhou, Jun [1 ]
Caan, Gozde [1 ]
Chiozzi, Riccardo [2 ,4 ]
Thalassinos, Konstantinos [2 ,4 ]
Cubuk, Cankut [5 ]
Lewis, Myles J. [5 ]
Cox, James J. [1 ]
Zhao, Jing [1 ]
Woods, Christopher G. [3 ]
Wood, John N. [1 ]
机构
[1] UCL, Wolfson Inst Biomed Res, Mol Nocicept Grp, Gower St, London WC1E 6BT, England
[2] Birkbeck & Univ Coll London, Inst Struct & Mol Biol, London WC1E 6BT, England
[3] Cambridge Inst Med Res, Keith Peters Bldg,Biomed Campus,Hills Rd, Cambridge CB2 0XY, England
[4] UCL, Div Biosci, Mass Spectrometry Sci Technol Platform, London, England
[5] Queen Mary Univ London, William Harvey Res Inst, Barts & London Sch Med & Dent, Ctr Expt Med & Rheumatol, London EC1M 6BQ, England
基金
英国惠康基金; 英国医学研究理事会;
关键词
Pain; Sodium channels; Nav1.7; Nav1.8; Side effects; Genetic deletion; Drugs; NMDA RECEPTOR; CELLS; NEURONS; INHIBITION; MUTATIONS; CURRENTS;
D O I
10.1016/j.ynpai.2024.100168
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Genetic deletion and pharmacological inhibition are distinct approaches to unravelling pain mechanisms, identifying targets and developing new analgesics. Both approaches have been applied to the voltage-gated sodium channels Nav1.7 and Nav1.8. Genetic deletion of Nav1.8 in mice leads to a loss of pain and antagonists are effective analgesics. The situation with Nav1.7 is more complex. Complete embryonic loss of Nav1.7 in humans or in mouse sensory neurons leads to anosmia as well as profound analgesia as a result of diminished neurotransmitter release. This is mediated by enhanced endogenous opioid signaling in humans and mice. In contrast, anosmia is opioid-independent. Sensory neuron excitability and autonomic function appear to be normal. Adult deletion of Nav1.7 in sensory neurons also leads to analgesia, but through diminished sensory and autonomic neuron excitability. There is no opioid component of analgesia or anosmia as shown by a lack of effect of naloxone. Pharmacological inhibition of Nav1.7 in mice and humans leads both to analgesia and dramatic sideeffects on the autonomic nervous system with no therapeutic window. These data demonstrate that specific Nav1.7 channel blockers will fail as analgesic drugs. The viability of embryonic null mutants suggests that there are compensatory changes to replace the lost Nav1.7 channel. Here we show that sensory neuron sodium channels Nav1.1, Nav1.2 and beta 4 subunits detected by Mass Spectrometry are upregulated in Nav1.7 embryonic null neurons and, together with other proteome changes, potentially compensate for the loss of Nav1.7. Interestingly, many of the upregulated proteins are known to interact with Nav1.7.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Complementary roles of murine NaV1.7, NaV1.8 and NaV1.9 in acute itch signalling
    Helen Kühn
    Leonie Kappes
    Katharina Wolf
    Lisa Gebhardt
    Markus F. Neurath
    Peter Reeh
    Michael J. M. Fischer
    Andreas E. Kremer
    Scientific Reports, 10
  • [22] Complementary roles of murine NaV1.7, NaV1.8 and NaV1.9 in acute itch signalling
    Kuehn, Helen
    Kappes, Leonie
    Wolf, Katharina
    Gebhardt, Lisa
    Neurath, Markus F.
    Reeh, Peter
    Fischer, Michael J. M.
    Kremer, Andreas E.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [23] Role of ASIC3, Nav1.7 and Nav1.8 in electroacupuncture-induced analgesia in a mouse model of fibromyalgia pain
    Yen, Liang-Ta
    Hsu, Yu-Chan
    Lin, Jaung-Geng
    Hsieh, Ching-Liang
    Lin, Yi-Wen
    ACUPUNCTURE IN MEDICINE, 2018, 36 (02) : 110 - 116
  • [24] NaV1.7: A central role in pain
    Waxman, Stephen G.
    Dib-Hajj, Sulayman D.
    NEURON, 2023, 111 (17) : 2615 - 2617
  • [25] Nav1.7 and Nav1.8: Diabetes-induced Changes in Primary Sensory Neurons in Rats
    Lv, Jianlin
    Wang, Mingjie
    Xia, Meng
    JOURNAL OF NEUROGASTROENTEROLOGY AND MOTILITY, 2016, 22 (04) : 707 - 708
  • [26] Effects of sevoflurane on voltage-gated sodium channel Nav1.8, Nav1.7, and Nav1.4 expressed in Xenopus oocytes
    Toru Yokoyama
    Kouichiro Minami
    Yuka Sudo
    Takafumi Horishita
    Junichi Ogata
    Toshihiko Yanagita
    Yasuhito Uezono
    Journal of Anesthesia, 2011, 25
  • [27] Unique electrophysiological property of a novel Nav1.7, Nav1.8, and Nav1.9 sodium channel blocker, ANP-230
    Kamei, Tatsuya
    Kudo, Takehiro
    Yamane, Hana
    Ishibashi, Fumiaki
    Takada, Yoshinori
    Honda, Shigeyuki
    Maezawa, Yasuyo
    Ikeda, Kazuhito
    Oyamada, Yoshihiro
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2024, 721
  • [28] Effects of sevoflurane on voltage-gated sodium channel Nav1.8, Nav1.7, and Nav1.4 expressed in Xenopus oocytes
    Yokoyama, Toru
    Minami, Kouichiro
    Sudo, Yuka
    Horishita, Takafumi
    Ogata, Junichi
    Yanagita, Toshihiko
    Uezono, Yasuhito
    JOURNAL OF ANESTHESIA, 2011, 25 (04) : 609 - 613
  • [29] Block of tetrodotoxin-sensitive, NaV1.7 and tetrodotoxin-resistant, NaV1.8, Na+ channels by ranolazine
    Rajamani, Sridharan
    Shryock, John C.
    Belardinelli, Luiz
    CHANNELS, 2008, 2 (06) : 449 - 460
  • [30] Pain behavior in SCN9A (Nav1.7) and SCN10A (Nav1.8) mutant rodent models
    Xue, Yaping
    Chidiac, Celeste
    Herault, Yann
    Gaveriaux-Ruff, Claire
    NEUROSCIENCE LETTERS, 2021, 753