A Novel Algorithm for Time Fractional Advection-Diffusion Equation

被引:0
|
作者
Zhang, Ping [1 ]
Zhang, Yingchao [1 ,2 ]
Jia, Yuntao [1 ]
Lin, Yingzhen [1 ]
机构
[1] Beijing Inst Technol, Zhuhai Campus, Zhuhai, Guangdong, Peoples R China
[2] Zhuhai Coll Sci & Technol, Sch Data Sci, Zhuhai, Guangdong, Peoples R China
关键词
epsilon-approximation solution; Legendre wavelets; linear interpolation; time fractional advection-diffusion equation;
D O I
10.1002/mma.10869
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this paper is to design a discrete-continuous coupled numerical algorithm for solving a time fractional advection-diffusion equation. Firstly, we discretize time variable by linear interpolation to obtain differential equations about spatial variable. Secondly, numerical algorithm is designed to solve the above differential equations using Legendre wavelet basis constructed in the reproducing kernel space W-2(3)[0,1]. Therefore, the numerical solution of the time fractional advection-diffusion equation is obtained. Furthermore, the convergence analysis and stability analysis of the proposed algorithm have been provided. Finally, five numerical examples are proposed respectively to verify the correctness of our theoretical analysis and to demonstrate the validity and applicability of the technique.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On solutions of time-fractional advection-diffusion equation
    Attia, Nourhane
    Akgul, Ali
    Seba, Djamila
    Nour, Abdelkader
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (06) : 4489 - 4516
  • [2] A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation
    Wenhui Guan
    Xuenian Cao
    Communications on Applied Mathematics and Computation, 2021, 3 : 41 - 59
  • [3] Anomalous diffusion and fractional advection-diffusion equation
    Chang, FX
    Chen, J
    Huang, W
    ACTA PHYSICA SINICA, 2005, 54 (03) : 1113 - 1117
  • [4] A Numerical Algorithm for the Caputo Tempered Fractional Advection-Diffusion Equation
    Guan, Wenhui
    Cao, Xuenian
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (01) : 41 - 59
  • [5] A Meshfree Method for the Fractional Advection-Diffusion Equation
    Lian, Yanping
    Wagner, Gregory J.
    Liu, Wing Kam
    MESHFREE METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS VIII, 2017, 115 : 53 - 66
  • [6] ON AN OPTIMAL CONTROL PROBLEM OF TIME-FRACTIONAL ADVECTION-DIFFUSION EQUATION
    Tang, Qing
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (02): : 761 - 779
  • [7] A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation
    Hong-Kui Pang
    Hai-Wei Sun
    Journal of Scientific Computing, 2021, 87
  • [8] A Fast Algorithm for the Variable-Order Spatial Fractional Advection-Diffusion Equation
    Pang, Hong-Kui
    Sun, Hai-Wei
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (01)
  • [9] Stability of a time fractional advection-diffusion system
    Arfaoui, Hassen
    Ben Makhlouf, Abdellatif
    CHAOS SOLITONS & FRACTALS, 2022, 157
  • [10] PARABOLIZED ALGORITHM FOR THE STEADY ADVECTION-DIFFUSION EQUATION
    NATAF, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1990, 310 (13): : 869 - 872