On full linear convergence and optimal complexity of adaptive FEM with inexact solver

被引:0
|
作者
Bringmann, Philipp [1 ]
Feischl, Michael [1 ]
Miraci, Ani [1 ]
Praetorius, Dirk [1 ]
Streitberger, Julian [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
Adaptive finite element method; Optimal convergence rates; Cost-optimality; Inexact solver; Full linear convergence; FINITE-ELEMENT METHODS; QUASI-OPTIMALITY; LAPLACIAN; RATES;
D O I
10.1016/j.camwa.2024.12.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ultimate goal of any numerical scheme for partial differential equations (PDEs) is to compute an approximation of user-prescribed accuracy at quasi-minimal computation time. To this end, algorithmically, the standard adaptive finite element method (AFEM) integrates an inexact solver and nested iterations with discerning stopping criteria balancing the different error components. The analysis ensuring optimal convergence order of AFEM with respect to the overall computational cost critically hinges on the concept of R-linear convergence of a suitable quasi- error quantity. This work tackles several shortcomings of previous approaches by introducing a new proof strategy. Previously, the analysis of the algorithm required several parameters to be fine-tuned. This work leaves the classical reasoning and introduces a summability criterion for R-linear convergence to remove restrictions on those parameters. Second, the usual assumption of a (quasi-)Pythagorean identity is replaced by the generalized notion of quasi-orthogonality from Feischl (2022) [22]. Importantly, this paves the way towards extending the analysis of AFEM with inexact solver to general inf-sup stable problems beyond the energy minimization setting. Numerical experiments investigate the choice of the adaptivity parameters.
引用
收藏
页码:102 / 129
页数:28
相关论文
共 50 条
  • [21] Optimal adaptive nonconforming FEM for the Stokes problem
    Carstensen, Carsten
    Peterseim, Daniel
    Rabus, Hella
    NUMERISCHE MATHEMATIK, 2013, 123 (02) : 291 - 308
  • [22] Convergence and rate optimality of adaptive multilevel stochastic Galerkin FEM
    Bespalov, Alex
    Praetorius, Dirk
    Ruggeri, Michele
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (03) : 2190 - 2213
  • [23] Cost-optimal adaptive iterative linearized FEM for semilinear elliptic PDEs
    Becker, Roland
    Brunner, Maximilian
    Innerberger, Michael
    Melenk, Jens Markus
    Praetorius, Dirk
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2023, 57 (04) : 2193 - 2225
  • [24] Convergence and Complexity of an Adaptive Planewave Method for Eigenvalue Computations
    Dai, Xiaoying
    Pan, Yan
    Yang, Bin
    Zhou, Aihui
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024, 16 (03) : 636 - 666
  • [25] Convergence and quasi-optimality of adaptive FEM with inhomogeneous Dirichlet data
    Feischl, M.
    Page, M.
    Praetorius, D.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 255 : 481 - 501
  • [26] A linear Uzawa-type FEM-BEM solver for nonlinear transmission problems
    Fuhrer, Thomas
    Praetorius, Dirk
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (08) : 2678 - 2697
  • [27] Rate-optimal goal-oriented adaptive FEM for semilinear elliptic PDEs
    Becker, Roland
    Brunner, Maximilian
    Innerberger, Michael
    Melenk, Jens Markus
    Praetorius, Dirk
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 118 : 18 - 35
  • [28] Simultaneous quasi-optimal convergence rates in FEM-BEM coupling
    Melenk, J. M.
    Praetorius, D.
    Wohlmuth, B.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (02) : 463 - 485
  • [29] Optimal Convergence Rates for Goal-Oriented FEM with Quadratic Goal Functional
    Becker, Roland
    Innerberger, Michael
    Praetorius, Dirk
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2021, 21 (02) : 267 - 288
  • [30] Full-discrete adaptive FEM for quasi-parabolic integro-differential PDE-constrained optimal control problem
    Shen, Wanfang
    BOUNDARY VALUE PROBLEMS, 2016,