On full linear convergence and optimal complexity of adaptive FEM with inexact solver

被引:0
|
作者
Bringmann, Philipp [1 ]
Feischl, Michael [1 ]
Miraci, Ani [1 ]
Praetorius, Dirk [1 ]
Streitberger, Julian [1 ]
机构
[1] TU Wien, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
欧洲研究理事会; 奥地利科学基金会;
关键词
Adaptive finite element method; Optimal convergence rates; Cost-optimality; Inexact solver; Full linear convergence; FINITE-ELEMENT METHODS; QUASI-OPTIMALITY; LAPLACIAN; RATES;
D O I
10.1016/j.camwa.2024.12.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The ultimate goal of any numerical scheme for partial differential equations (PDEs) is to compute an approximation of user-prescribed accuracy at quasi-minimal computation time. To this end, algorithmically, the standard adaptive finite element method (AFEM) integrates an inexact solver and nested iterations with discerning stopping criteria balancing the different error components. The analysis ensuring optimal convergence order of AFEM with respect to the overall computational cost critically hinges on the concept of R-linear convergence of a suitable quasi- error quantity. This work tackles several shortcomings of previous approaches by introducing a new proof strategy. Previously, the analysis of the algorithm required several parameters to be fine-tuned. This work leaves the classical reasoning and introduces a summability criterion for R-linear convergence to remove restrictions on those parameters. Second, the usual assumption of a (quasi-)Pythagorean identity is replaced by the generalized notion of quasi-orthogonality from Feischl (2022) [22]. Importantly, this paves the way towards extending the analysis of AFEM with inexact solver to general inf-sup stable problems beyond the energy minimization setting. Numerical experiments investigate the choice of the adaptivity parameters.
引用
收藏
页码:102 / 129
页数:28
相关论文
共 50 条
  • [1] Rate optimal adaptive FEM with inexact solver for nonlinear operators
    Gantner, Gregor
    Haberl, Alexander
    Praetorius, Dirk
    Stiftner, Bernhard
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2018, 38 (04) : 1797 - 1831
  • [2] AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY WITH OPTIMAL CONVERGENCE RATES
    Bringmann, P.
    Carstensen, C.
    Starke, G.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 428 - 447
  • [3] Optimal complexity of goal-oriented adaptive FEM for nonsymmetric linear elliptic PDEs
    Bringmann, Philipp
    Brunner, Maximilian
    Praetorius, Dirk
    Streitberger, Julian
    JOURNAL OF NUMERICAL MATHEMATICS, 2024,
  • [4] Adaptive FEM with quasi-optimal overall cost for nonsymmetric linear elliptic PDEs
    Brunner, Maximilian
    Innerberger, Michael
    Miraci, Ani
    Praetorius, Dirk
    Streitberger, Julian
    Heid, Pascal
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2023, 44 (03) : 1560 - 1596
  • [5] OPTIMAL CONVERGENCE OF ADAPTIVE FEM FOR EIGENVALUE CLUSTERS IN MIXED FORM
    Boffi, Daniele
    Gallistl, Dietmar
    Gardini, Francesca
    Gastaldi, Lucia
    MATHEMATICS OF COMPUTATION, 2017, 86 (307) : 2213 - 2237
  • [6] Adaptive BEM with inexact PCG solver yields almost optimal computational costs
    Fuhrer, Thomas
    Haberl, Alexander
    Praetorius, Dirk
    Schimanko, Stefan
    NUMERISCHE MATHEMATIK, 2019, 141 (04) : 967 - 1008
  • [7] An adaptive least-squares FEM for the Stokes equations with optimal convergence rates
    Bringmann, P.
    Carstensen, C.
    NUMERISCHE MATHEMATIK, 2017, 135 (02) : 459 - 492
  • [8] ADAPTIVE MORLEY FEM FOR THE VON KAARMAN EQUATIONS WITH OPTIMAL CONVERGENCE RATES
    Carstensen, Carsten
    Nataraj, Neela
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (02) : 696 - 719
  • [9] OPTIMAL CONVERGENCE RATES OF ADAPTIVE WOPSIP FROM SUPERCLOSE NONCONFORMING FEM
    Carstensen, Carsten
    Graessle, Benedikt
    MATHEMATICS OF COMPUTATION, 2025,
  • [10] Cost-optimal adaptive FEM with linearization and algebraic solver for semilinear elliptic PDEs
    Brunner, Maximilian
    Praetorius, Dirk
    Streitberger, Julian
    NUMERISCHE MATHEMATIK, 2025, : 409 - 445