Accurately Deciphering Novel Cell Type in Spatially Resolved Single-Cell Data Through Optimal Transport

被引:0
|
作者
Luo, Mai [1 ]
Zeng, Yuansong [2 ]
Chen, Jianing [1 ]
Shangguan, Ningyuan [1 ]
Zhou, Wenhao [1 ]
Yang, Yuedong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou 510006, Peoples R China
[2] Chongqing Univ, Sch Big Data & Software Engn, Chongqing 400000, Peoples R China
关键词
Spatial Transcriptomics Annotation; Cell Type Discovery; Optimal Transport; Representation Learning;
D O I
10.1007/978-981-97-5131-0_10
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in spatial transcriptomics enable the detection of spatial heterogeneity at single-cell resolution. However, existing annotation methods are limited in performance due to that they are mainly designed for scRNA-seq data without accounting for spatial coordinate information. More importantly, they have been struggling to identify novel cell types. Here, we introduce SPOTAnno, a novel method that allows for the simultaneous and accurate identification of both seen and novel cell types within spatially resolved single-cell data using Optimal Transport (OT). Concretely, SPOTAnno first embeds the spatial data into low-dimensional embeddings through the transformer accounting for spatial coordinates. Based on the low-dimensional embeddings, SPOTAnno employs a partial alignment strategy to remove batch effects by aligning target data to the reference prototypes through OT-based statistical information. In parallel, SPOTAnno utilizes an OT-based representation learning mechanism to map each cell onto the prototypes of the target data, which enhances global cluster discrimination and ensures local cell consistency within the target dataset. Additionally, an entropy-based loss is applied for target cells to increase the prediction certainty. Comprehensive experiments demonstrate that SPOTAnno outperforms state-of-the-art methods in both intra-data and cross-data settings, showcasing its effectiveness in cell type discovery and annotation accuracy. Implementations are available at https://github.com/QingJun3/SPOTAnno.
引用
收藏
页码:107 / 118
页数:12
相关论文
共 50 条
  • [21] Multiplexed laser particles for spatially resolved single-cell analysis
    Sheldon J. J. Kwok
    Nicola Martino
    Paul H. Dannenberg
    Seok-Hyun Yun
    Light: Science & Applications, 8
  • [22] Multiplexed laser particles for spatially resolved single-cell analysis
    Kwok, Sheldon J. J.
    Martino, Nicola
    Dannenberg, Paul H.
    Yun, Seok-Hyun
    LIGHT-SCIENCE & APPLICATIONS, 2019, 8 (1)
  • [23] A single-cell and spatially resolved atlas of human breast cancers
    Wu, Sunny Z.
    Al-Eryani, Ghamdan
    Roden, Daniel Lee
    Junankar, Simon
    Harvey, Kate
    Andersson, Alma
    Thennavan, Aatish
    Wang, Chenfei
    Torpy, James R.
    Bartonicek, Nenad
    Wang, Taopeng
    Larsson, Ludvig
    Kaczorowski, Dominik
    Weisenfeld, Neil, I
    Uytingco, Cedric R.
    Chew, Jennifer G.
    Bent, Zachary W.
    Chan, Chia-Ling
    Gnanasambandapillai, Vikkitharan
    Dutertre, Charles-Antoine
    Gluch, Laurence
    Hui, Mun N.
    Beith, Jane
    Parker, Andrew
    Robbins, Elizabeth
    Segara, Davendra
    Cooper, Caroline
    Mak, Cindy
    Chan, Belinda
    Warrier, Sanjay
    Ginhoux, Florent
    Millar, Ewan
    Powell, Joseph E.
    Williams, Stephen R.
    Liu, X. Shirley
    O'Toole, Sandra
    Lim, Elgene
    Lundeberg, Joakim
    Perou, Charles M.
    Swarbrick, Alexander
    NATURE GENETICS, 2021, 53 (09) : 1334 - +
  • [24] SCAR: Single-cell and Spatially-resolved Cancer Resources
    Deng, Yushan
    Chen, Peixin
    Xiao, Jiedan
    Li, Mengrou
    Shen, Jiayi
    Qin, Siying
    Jia, Tengfei
    Li, Changxiao
    Chang, Ashley
    Zhang, Wensheng
    Liu, Hebin
    Xue, Ruidong
    Zhang, Ning
    Wang, Xiangdong
    Huang, Li
    Chen, Dongsheng
    NUCLEIC ACIDS RESEARCH, 2024, 52 (D1) : D1407 - D1417
  • [25] A single-cell and spatially resolved atlas of human breast cancers
    Sunny Z. Wu
    Ghamdan Al-Eryani
    Daniel Lee Roden
    Simon Junankar
    Kate Harvey
    Alma Andersson
    Aatish Thennavan
    Chenfei Wang
    James R. Torpy
    Nenad Bartonicek
    Taopeng Wang
    Ludvig Larsson
    Dominik Kaczorowski
    Neil I. Weisenfeld
    Cedric R. Uytingco
    Jennifer G. Chew
    Zachary W. Bent
    Chia-Ling Chan
    Vikkitharan Gnanasambandapillai
    Charles-Antoine Dutertre
    Laurence Gluch
    Mun N. Hui
    Jane Beith
    Andrew Parker
    Elizabeth Robbins
    Davendra Segara
    Caroline Cooper
    Cindy Mak
    Belinda Chan
    Sanjay Warrier
    Florent Ginhoux
    Ewan Millar
    Joseph E. Powell
    Stephen R. Williams
    X. Shirley Liu
    Sandra O’Toole
    Elgene Lim
    Joakim Lundeberg
    Charles M. Perou
    Alexander Swarbrick
    Nature Genetics, 2021, 53 : 1334 - 1347
  • [26] Preface for Special Issue: Single-Cell and Spatially Resolved Omics
    Fan, Xiaohui
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2023, 13 (08) : 831 - 832
  • [27] Preface for Special Issue: Single-Cell and Spatially Resolved Omics
    Fan, Xiaohui
    JOURNAL OF PHARMACEUTICAL ANALYSIS, 2023, 13 (07) : 689 - 690
  • [28] Cell type prioritization in single-cell data
    Skinnider, Michael A.
    Squair, Jordan W.
    Kathe, Claudia
    Anderson, Mark A.
    Gautier, Matthieu
    Matson, Kaya J. E.
    Milano, Marco
    Hutson, Thomas H.
    Barraud, Quentin
    Phillips, Aaron A.
    Foster, Leonard J.
    La Manno, Gioele
    Levine, Ariel J.
    Courtine, Gregoire
    NATURE BIOTECHNOLOGY, 2021, 39 (01) : 30 - 34
  • [29] Cell type prioritization in single-cell data
    Michael A. Skinnider
    Jordan W. Squair
    Claudia Kathe
    Mark A. Anderson
    Matthieu Gautier
    Kaya J. E. Matson
    Marco Milano
    Thomas H. Hutson
    Quentin Barraud
    Aaron A. Phillips
    Leonard J. Foster
    Gioele La Manno
    Ariel J. Levine
    Grégoire Courtine
    Nature Biotechnology, 2021, 39 : 30 - 34
  • [30] A unified computational framework for single-cell data integration with optimal transport
    Kai Cao
    Qiyu Gong
    Yiguang Hong
    Lin Wan
    Nature Communications, 13