Source-Free Progressive Domain Adaptation Network for Universal Cross-Domain Fault Diagnosis of Industrial Equipment

被引:0
|
作者
Li, Jipu [1 ]
Yue, Ke [2 ]
Wu, Zhaoqian [1 ]
Jiang, Fei [1 ]
Zhong, Zhi [1 ]
Li, Weihua [3 ]
Zhang, Shaohui [1 ]
机构
[1] Dongguan Univ Technol, Sch Mech Engn, Dongguan 523808, Peoples R China
[2] South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 510641, Guangdong, Peoples R China
[3] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Training; Fault diagnosis; Feature extraction; Data models; Machinery; Production; Electromechanical systems; Accuracy; Fault detection; Distribution searching; fault diagnosis; progressive domain adaptation (DA); rotating machinery; source-free;
D O I
10.1109/JSEN.2025.3529034
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, transfer learning (TL)-based intelligent fault diagnosis (IFD) methods have been extensively adopted in the realm of industrial equipment. A fundamental assumption that the source and target domains have matching fault types is effectively resolved. Unfortunately, existing methods fail to account for two limitations in real-world applications: 1) the existing methods are limited to specific domain adaptation (DA) scenarios, which makes it difficult to achieve satisfactory results and 2) the existing methods do not consider data privacy protection because they require both source and target samples during the training stage. To address these challenges, a novel source-free progressive DA network (SPDAN) is proposed to simultaneously handle multiple DA scenarios without accessing source samples. First, a neighbor searching-based trustworthy pairs construction is utilized to provide the high-confident nearest fault samples. Second, an instance alignment-based domain shift reduction is used to eliminate the data distribution discrepancy of different domains. Finally, an information entropy-based novel fault detection is employed to identify unknown fault samples. Experiments on two bearing datasets validate the proposed SPDAN. The experiments confirm that the proposed SPDAN can successfully operate in multiple DA scenarios without relying on source samples, making it a highly promising approach for diagnosing faults in industrial equipment.
引用
收藏
页码:8067 / 8078
页数:12
相关论文
共 50 条
  • [1] Universal source-free domain adaptation method for cross-domain fault diagnosis of machines
    Zhang, Yongchao
    Ren, Zhaohui
    Feng, Ke
    Yu, Kun
    Beer, Michael
    Liu, Zheng
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 191
  • [2] A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis
    Tian, Jilun
    Zhang, Jiusi
    Jiang, Yuchen
    Wu, Shimeng
    Luo, Hao
    Yin, Shen
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 243
  • [3] Mixed Attention Network for Source-Free Domain Adaptation in Bearing Fault Diagnosis
    Liu, Yijiao
    Yuan, Qiufan
    Sun, Kang
    Huo, Mingying
    Qi, Naiming
    IEEE ACCESS, 2024, 12 : 93771 - 93780
  • [4] Cross-Domain Adaptation Using Domain Interpolation for Rotating Machinery Fault Diagnosis
    Jang, Gye-Bong
    Cho, Sung-Bae
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [5] Uncertainty Estimation Pseudo-Label-Guided Source-Free Domain Adaptation for Cross-Domain Remaining Useful Life Prediction in IIoT
    Chen, Zhuohang
    Chen, Jinglong
    Pan, Tongyang
    Xie, Jingsong
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (01): : 236 - 249
  • [6] Multiple Source-Free Domain Adaptation Network Based on Knowledge Distillation for Machinery Fault Diagnosis
    Yue, Ke
    Li, Jipu
    Chen, Zhuyun
    Huang, Ruyi
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [7] Domain Adversarial Transfer Network for Cross-Domain Fault Diagnosis of Rotary Machinery
    Chen, Zhuyun
    He, Guolin
    Li, Jipu
    Liao, Yixiao
    Gryllias, Konstantinos
    Li, Weihua
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2020, 69 (11) : 8702 - 8712
  • [8] A Fine-Grained Adversarial Network Method for Cross-Domain Industrial Fault Diagnosis
    Chai, Zheng
    Zhao, Chunhui
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (03) : 1432 - 1442
  • [9] A Compressed Unsupervised Deep Domain Adaptation Model for Efficient Cross-Domain Fault Diagnosis
    Xu, Gaowei
    Huang, Chenxi
    Silva, Daniel Santos da
    Albuquerque, Victor Hugo C. de
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (05) : 6741 - 6749
  • [10] Fault-Prototypical Adapted Network for Cross-Domain Industrial Intelligent Diagnosis
    Chai, Zheng
    Zhao, Chunhui
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2022, 19 (04) : 3649 - 3658