Proof of some conjectural congruences involving products of two binomial coefficients

被引:0
|
作者
Mao, Guo-Shuai [1 ]
Zhang, Xiran [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Reading Acad, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruences; Central binomial coefficients; Symbolic summation; Harmonic numbers; Legendre symbol; DIVISIBILITY;
D O I
10.1016/j.jsc.2025.102436
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we mainly prove the following conjectures of Z.-W. Sun: Let p equivalent to 3 (mod 4) be a prime. Then p Sigma -1 k=0 p Sigma-1 3 k=0 (2k )2 (2 ) k ) p + 1 (2k- 1)8k equivalent to - ((p + 1)/2 p 2p-1 + 1 (p + 1)/4 (mod p2), (2k )( 2k ) k (2 ) 2p k+1 (2k - 1)8k equivalent to p + ) (mod p2), p ((p+1)/2 (p+1)/4 ) where ( p<middle dot> stands for the Legendre symbol. The necessary proofs are provided by the computer algebra software Sigma to find and verify the underlying hypergeometric sum identities. (c) 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:13
相关论文
共 50 条