Preliminary Investigation on Machine Learning and Deep Learning Models for Change of Direction Classification in Running

被引:0
|
作者
Jaiswal, Pranay [1 ]
Kaushik, Abhishek [1 ]
Lawless, Fiona [1 ]
Malaquias, Tiago [2 ]
McCaffery, Fergal [1 ]
机构
[1] Dundalk Inst Technol, Dundalk, Ireland
[2] STATSports, Newry, North Ireland
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT I | 2025年 / 15346卷
基金
爱尔兰科学基金会;
关键词
Change of Direction; Machine Learning; Deep Learning; Sports; Running; Classification;
D O I
10.1007/978-3-031-77731-8_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ability to detect, define, and classify Change of Direction (COD) movements during running plays a crucial role in sports science, as it has been widely used to assess athlete performance. Automating the process of COD classification during live games or training can provide real-time feedback. In this study, we evaluated Machine Learning (ML) and Deep Learning (DL) models for the classification of COD using accelerometers and gyroscope sensor data, and speed data were calculated from the Global Positioning System (GPS) sensor data. We hypothesized that DL algorithms classify COD better than ML classification algorithms. Comparative analysis showed that the best-performing DL and ML models showed similar behavior. Similarly, the statistical analysis observed no significant difference. This emphasized the importance of accurate model selection.
引用
收藏
页码:180 / 191
页数:12
相关论文
共 50 条
  • [31] A systematic review of EEG based automated schizophrenia classification through machine learning and deep learning
    Rahul, Jagdeep
    Sharma, Diksha
    Sharma, Lakhan Dev
    Nanda, Umakanta
    Sarkar, Achintya Kumar
    FRONTIERS IN HUMAN NEUROSCIENCE, 2024, 18
  • [32] An Investigation on Deep Learning Approaches for Diatoms classification
    Carcagni, Pierluigi
    da Silva Junior, Andouglas Goncalves
    Memmolo, Pasquale
    Bianco, Vittorio
    Merola, Francesco
    Garcia Goncalves, Luiz Marcos
    Ferraro, Pietro
    Distante, Cosimo
    MULTIMODAL SENSING AND ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS II, 2021, 11785
  • [33] Skin Disease Classification using Dermoscopy Images through Deep Feature Learning Models and Machine Learning Classifiers
    Gupta, Siddharth
    Panwar, Avnish
    Mishra, Kishor
    IEEE EUROCON 2021 - 19TH INTERNATIONAL CONFERENCE ON SMART TECHNOLOGIES, 2021, : 170 - 174
  • [34] Arabic News Classification Based on the Country of Origin Using Machine Learning and Deep Learning Techniques
    Zamzami, Nuha
    Himdi, Hanen
    Sabbeh, Sahar F.
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [35] Machine learning and deep learning: Introduction and applications
    Nakashima T.
    Zairyo, 2020, 9 (633-639): : 633 - 639
  • [36] Mapping Landslides on EO Data: Performance of Deep Learning Models vs. Traditional Machine Learning Models
    Prakash, Nikhil
    Manconi, Andrea
    Loew, Simon
    REMOTE SENSING, 2020, 12 (03)
  • [37] Exploiting machine learning and deep learning models for misbehavior detection in VANET
    Sultana R.
    Grover J.
    Meghwal J.
    Tripathi M.
    International Journal of Computers and Applications, 2022, 44 (11): : 1024 - 1038
  • [38] Classification of deep image features of lentil varieties with machine learning techniques
    Butuner, Resul
    Cinar, Ilkay
    Taspinar, Yavuz Selim
    Kursun, Ramazan
    Calp, M. Hanefi
    Koklu, Murat
    EUROPEAN FOOD RESEARCH AND TECHNOLOGY, 2023, 249 (05) : 1303 - 1316
  • [39] Machine Learning and Deep Learning Models Applied to Photovoltaic Production Forecasting
    Cordeiro-Costas, Moises
    Villanueva, Daniel
    Eguia-Oller, Pablo
    Granada-Alvarez, Enrique
    APPLIED SCIENCES-BASEL, 2022, 12 (17):
  • [40] Phishing Attacks Detection using Machine Learning and Deep Learning Models
    Aljabri, Malak
    Mirza, Samiha
    2022 7TH INTERNATIONAL CONFERENCE ON DATA SCIENCE AND MACHINE LEARNING APPLICATIONS (CDMA 2022), 2022, : 175 - 180