Preliminary Investigation on Machine Learning and Deep Learning Models for Change of Direction Classification in Running

被引:0
|
作者
Jaiswal, Pranay [1 ]
Kaushik, Abhishek [1 ]
Lawless, Fiona [1 ]
Malaquias, Tiago [2 ]
McCaffery, Fergal [1 ]
机构
[1] Dundalk Inst Technol, Dundalk, Ireland
[2] STATSports, Newry, North Ireland
来源
INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2024, PT I | 2025年 / 15346卷
基金
爱尔兰科学基金会;
关键词
Change of Direction; Machine Learning; Deep Learning; Sports; Running; Classification;
D O I
10.1007/978-3-031-77731-8_17
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ability to detect, define, and classify Change of Direction (COD) movements during running plays a crucial role in sports science, as it has been widely used to assess athlete performance. Automating the process of COD classification during live games or training can provide real-time feedback. In this study, we evaluated Machine Learning (ML) and Deep Learning (DL) models for the classification of COD using accelerometers and gyroscope sensor data, and speed data were calculated from the Global Positioning System (GPS) sensor data. We hypothesized that DL algorithms classify COD better than ML classification algorithms. Comparative analysis showed that the best-performing DL and ML models showed similar behavior. Similarly, the statistical analysis observed no significant difference. This emphasized the importance of accurate model selection.
引用
收藏
页码:180 / 191
页数:12
相关论文
共 50 条
  • [21] Review of machine learning and deep learning models for toxicity prediction
    Guo, Wenjing
    Liu, Jie
    Dong, Fan
    Song, Meng
    Li, Zoe
    Khan, Md Kamrul Hasan
    Patterson, Tucker A.
    Hong, Huixiao
    EXPERIMENTAL BIOLOGY AND MEDICINE, 2023, 248 (21) : 1952 - 1973
  • [22] A hybrid framework for glaucoma detection through federated machine learning and deep learning models
    Aljohani, Abeer
    Aburasain, Rua Y.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [23] Deep Learning Approach Versus Traditional Machine Learning for ADHD Classification
    Cicek, Gulay
    Akan, Aydin
    TIP TEKNOLOJILERI KONGRESI (TIPTEKNO'21), 2021,
  • [24] Machine learning and deep learning predictive models for type 2 diabetes: a systematic review
    Fregoso-Aparicio, Luis
    Noguez, Julieta
    Montesinos, Luis
    Garcia-Garcia, Jose A.
    DIABETOLOGY & METABOLIC SYNDROME, 2021, 13 (01)
  • [25] Bangla Toxic Comment Classification (Machine Learning and Deep Learning Approach)
    JuBaer, A. N. M.
    Sayem, Abu
    Rahman, Md Ashikur
    PROCEEDINGS OF THE 2019 8TH INTERNATIONAL CONFERENCE ON SYSTEM MODELING & ADVANCEMENT IN RESEARCH TRENDS (SMART-2019), 2019, : 62 - 66
  • [26] Automatic Classification of Vulnerabilities using Deep Learning and Machine Learning Algorithms
    Ramesh, Vishnu
    Abraham, Sara
    Vinod, P.
    Mohamed, Isham
    Visaggio, Corrado A.
    Laudanna, Sonia
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [27] A text classification network model combining machine learning and deep learning
    Chen, Hao
    Zhang, Haifei
    Yang, Yuwei
    He, Long
    INTERNATIONAL JOURNAL OF SENSOR NETWORKS, 2024, 44 (03) : 182 - 192
  • [28] A review on recent developments in cancer detection using Machine Learning and Deep Learning models
    Maurya, Sonam
    Tiwari, Sushil
    Mothukuri, Monika Chowdary
    Tangeda, Chandra Mallika
    Nandigam, Rohitha Naga Sri
    Addagiri, Durga Chandana
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 80
  • [29] Crop Seeds Classification Using Traditional Machine Learning and Deep Learning Techniques: A Comprehensive Survey
    Vipin Kumar
    Prem Shankar Singh Aydav
    Sonajharia Minz
    SN Computer Science, 5 (8)
  • [30] Hemp Disease Detection and Classification Using Machine Learning and Deep Learning
    Bose, Bipasa
    Priya, Jyotsna
    Welekar, Sonam
    Gao, Zeyu
    2020 IEEE INTL SYMP ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, INTL CONF ON BIG DATA & CLOUD COMPUTING, INTL SYMP SOCIAL COMPUTING & NETWORKING, INTL CONF ON SUSTAINABLE COMPUTING & COMMUNICATIONS (ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM 2020), 2020, : 762 - 769