Weak Hölder continuity of Lyapunov exponent for Gevrey quasi-periodic Schrödinger cocycles

被引:0
作者
Fang, Licheng [1 ]
Wang, Fengpeng [2 ]
机构
[1] Yantai Univ, Sch Math & Informat Sci, Qingquan Rd 30, Yantai 264005, Peoples R China
[2] Sun Yat Sen Univ, Sch Math Zhuhai, Daxue Rd 2, Zhuhai 519082, Peoples R China
关键词
log-H & ouml; lder continuity; Lyapunov exponents; Gevrey potential; quasi-periodic Schr & ouml; dinger cocycles; HOLDER CONTINUITY; SPECTRAL PROPERTIES; OPERATORS; LOCALIZATION;
D O I
10.4171/JST/527
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the large deviation theorem (LDT) for quasi-periodic dynamically defined Gevrey Schr & ouml;dinger cocycles with weak Liouville frequency. We show that the associated Lyapunov exponent is log-H & ouml;lder continuous, while the frequency satisfies B(w) = 0 .
引用
收藏
页码:1647 / 1660
页数:14
相关论文
共 25 条
  • [1] The Ten Martini Problem
    Avila, Artur
    Jitomirskaya, Svetlana
    [J]. ANNALS OF MATHEMATICS, 2009, 170 (01) : 303 - 342
  • [2] SPECTRAL PROPERTIES OF ONE DIMENSIONAL QUASI-CRYSTALS
    BELLISSARD, J
    IOCHUM, B
    SCOPPOLA, E
    TESTARD, D
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 125 (03) : 527 - 543
  • [3] Bochi J., 1999, Discontinuity of the Lyapunov exponent for non-hyperbolic cocycles
  • [4] Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential
    Bourgain, J
    Jitomirskaya, S
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) : 1203 - 1218
  • [5] Bourgain J, 2005, ANN MATH STUD, V158
  • [6] Sharp Holder continuity of the Lyapunov exponent of finitely differentiable quasi-periodic cocycles
    Cai, Ao
    Chavaudret, Claire
    You, Jiangong
    Zhou, Qi
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (3-4) : 931 - 958
  • [7] Global rigidity for ultra-differentiable quasiperiodic cocycles and its spectral applications
    Cheng, Hongyu
    Ge, Lingrui
    You, Jiangong
    Zhou, Qi
    [J]. ADVANCES IN MATHEMATICS, 2022, 409
  • [8] Cycon H. M., 1987, SCHRODINGER OPERATOR
  • [9] Log-dimensional spectral properties of one-dimensional quasicrystals
    Damanik, D
    Landrigan, M
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (07) : 2209 - 2216
  • [10] Schrodinger operators with dynamically defined potentials
    Damanik, David
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2017, 37 : 1681 - 1764