Fast primal-dual algorithm with Tikhonov regularization for a linear equality constrained convex optimization problem

被引:0
作者
Zhu, Ting-Ting [1 ]
Fang, Ya-Ping [1 ]
Hu, Rong [2 ]
机构
[1] Sichuan Univ, Dept Math, Chengdu 610064, Sichuan, Peoples R China
[2] Chengdu Univ Informat Technol, Dept Appl Math, Chengdu 610225, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear equality constrained convex optimization problem; Fast primal-dual algorithm; Tikhonov regularization; Convergence rate; The minimal norm solution; Strong convergence; INERTIAL DYNAMICS; CONVERGENCE; SYSTEM;
D O I
10.1007/s11075-025-02010-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a fast primal-dual algorithm with Tikhonov regularization for solving a linear equality constrained convex optimization problem in a Hilbert space. When the Tikhonov regularization coefficient converges rapidly to zero, we prove that the proposed algorithm enjoys fast convergence rates for the objective function, the primal-dual gap and the feasibility violation, while when the Tikhonov regularization coefficient converges slowly to zero, we prove that the primal sequence generated by the algorithm converges strongly to the minimal norm solution of the problem. Finally, we perform some numerical experiments to illustrate the efficiency of our algorithm.
引用
收藏
页数:30
相关论文
共 44 条
  • [1] TIKHONOV REGULARIZATION OF A PERTURBED HEAVY BALL SYSTEM WITH VANISHING DAMPING
    Alecsa, Cristian Daniel
    Laszlo, Szilard Csaba
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2021, 31 (04) : 2921 - 2954
  • [2] Convex optimization via inertial algorithms with vanishing Tikhonov regularization: fast convergence to the minimum norm solution
    Attouch, Hedy
    Laszlo, Szilard Csaba
    [J]. MATHEMATICAL METHODS OF OPERATIONS RESEARCH, 2024, 99 (03) : 307 - 347
  • [3] Damped inertial dynamics with vanishing Tikhonov regularization: Strong asymptotic convergence towards the minimum norm solution
    Attouch, Hedy
    Balhag, Aicha
    Chbani, Zaki
    Riahi, Hassan
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 311 : 29 - 58
  • [4] Combining fast inertial dynamics for convex optimization with Tikhonov regularization
    Attouch, Hedy
    Chbani, Zaki
    Riahi, Hassan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (02) : 1065 - 1094
  • [5] Fast convergence of inertial dynamics and algorithms with asymptotic vanishing viscosity
    Attouch, Hedy
    Chbani, Zaki
    Peypouquet, Juan
    Redont, Patrick
    [J]. MATHEMATICAL PROGRAMMING, 2018, 168 (1-2) : 123 - 175
  • [6] Bagy AC, 2023, Arxiv, DOI arXiv:2309.13200
  • [7] BECK A, 2017, 1 ORDER METHODS OPTI, DOI DOI 10.1137/1.9781611974997
  • [8] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Beck, Amir
    Teboulle, Marc
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01): : 183 - 202
  • [9] Fast Augmented Lagrangian Method in the convex regime with convergence guarantees for the iterates
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Dang-Khoa Nguyen
    [J]. MATHEMATICAL PROGRAMMING, 2023, 200 (01) : 147 - 197
  • [10] Improved convergence rates and trajectory convergence for primal-dual dynamical systems with vanishing damping
    Bot, Radu Ioan
    Nguyen, Dang-Khoa
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 303 : 369 - 406