Toxicological Effects of Metal-Doped Carbon Quantum Dots

被引:1
作者
Mishra, Jyotsna [1 ]
Suryawanshi, Tejas [1 ]
Redkar, Neha [2 ]
Das, Rahul Kumar [2 ,3 ]
Saxena, Sumit [1 ,2 ,3 ]
Majumder, Abhijit [4 ]
Kondabagil, Kiran [3 ,5 ]
Shukla, Shobha [1 ,2 ,3 ]
机构
[1] Indian Inst Technol, Ctr Res Nano Technol & Sci CRNTS, Mumbai 400076, India
[2] Indian Inst Technol, Dept Met Engn & Mat Sci, Nanostruct Engn & Modeling Lab, Mumbai 400076, India
[3] Indian Inst Technol, Water Innovat Ctr, Technol Res & Educ WICTRE, Mumbai, India
[4] Indian Inst Technol, Dept Chem Engn, Mumbai, India
[5] Indian Inst Technol, Dept Biosci & Bioengn, Mumbai, India
关键词
Carbon Quantum Dots; Metal doping; Toxicity assessment; Trophic level; Environmental sustainability; CASPASE; 3; CYTOTOXICITY; CHEMISTRY; COPPER; OXYGEN; CELLS; IRON;
D O I
10.1002/cssc.202402056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Multi-domain biological and environmental research highlights the efficacy of carbon quantum dots (CQDs) as a safer alternative to toxic metal-based quantum dots (QDs) and expensive conventional organic dyes, particularly in biomedical applications. CQDs are often functionalized by metal heteroatoms to improve their electron-donating properties and modify charge density, thereby enhancing their physicochemical characteristics. However, metal doping may re-introduce toxicity concerns similar to traditional QDs and further increase environmental risks. Thus, detailed ecotoxicology studies are necessary to understand the environmental impact of these CQDs in different organisms. To address this, we synthesized metal-doped CQDs (Mn, Fe, Cu and Ag) using microwave-assisted technique and conducted in-vitro experiments on diverse biological models belonging to different trophic levels, including bacteria (E. coli and B. subtilis), plants (Vigna radiata) and mammalian cells (mouse myoblast cells- C2C12). Results revealed that among all the CQDs explored, Ag-CQDs exhibited highest toxicity causing similar to 85% bacterial and 100% mammalian cell death even at 10 mu g mL(-1) and similar to 60% radicle growth inhibition after 5 days of exposure at 50 mu g mL(-1), whereas Mn-CQD showed the least toxicity. These findings contribute significantly to the critical need for determining optimal concentration ranges for metal-doped CQDs and enhance our understanding of their environmental implications.
引用
收藏
页数:13
相关论文
共 57 条
[1]   Apoptosis induced by copper oxide quantum dots in cultured C2C12 cells via caspase 3 and caspase 7: a study on cytotoxicity assessment [J].
Amna, Touseef ;
Van Ba, Hoa ;
Vaseem, M. ;
Hassan, M. Shamshi ;
Khil, Myung-Seob ;
Hahn, Y. B. ;
Lee, Hak-Kyo ;
Hwang, I. H. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2013, 97 (12) :5545-5553
[2]   The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment [J].
Anjum, Muna F. ;
Schmitt, Heike ;
Boerjesson, Stefan ;
Berendonk, Thomas U. ;
Stehling, Eliana Guedes ;
Boerlin, Patrick ;
Topp, Edward ;
Jardine, Claire ;
Li, Xuewen ;
Li, Bing ;
Dolejska, Monika ;
Madec, Jean-Yves ;
Dagot, Christophe ;
Guenther, Sebastian ;
Walsh, Fiona ;
Villa, Laura ;
Veldman, Kees ;
Sunde, Marianne ;
Krzeminski, Pawel ;
Wasyl, Dariusz ;
Popowska, Magdalena ;
Jaerhult, Josef ;
Oern, Stefan ;
Mahjoub, Olfa ;
Mansour, Wejdene ;
Thai, Dinh Nho ;
Elving, Josefine ;
Pedersen, Karl .
CURRENT OPINION IN MICROBIOLOGY, 2021, 64 :152-158
[3]   A pilot study on carbon quantum dots for bioimaging of muscle myoblasts [J].
Anpalagan, Karthiga K. ;
Karakkat, Jimsheena, V ;
Lai, Daniel T. H. ;
Apostolopoulos, Vasso ;
Nurgali, Kulmira ;
Truskewycz, Adam ;
Cole, Ivan .
2020 IEEE 20TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE 2020), 2020, :630-636
[4]   Structural chemistry and geochemistry of silver-sulfur compounds: Critical review [J].
Bell, RA ;
Kramer, JR .
ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY, 1999, 18 (01) :9-22
[5]   Seed germination studies on Chickpeas, Barley, Mung beans and Wheat with natural biomass and plastic waste derived C-dots [J].
Chauhan, Pooja ;
Kumari, Manisha ;
Chaudhary, Savita ;
Chaudhary, Ganga Ram ;
Umar, Ahmad ;
Baskoutas, Sotirios .
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 837
[6]   Leveraging oxygen-vacancy-rich Yb-MnO2/N-carbon quantum dots heterostructure for solar light-driven tetracycline detoxification and antibiotic-resistant bacteria inactivation [J].
Chen, Zhiquan ;
Yang, Didi ;
Liang, Zhenda ;
Xu, Yongtao ;
Pang, Yijun ;
Xu, Gang ;
Chen, Chaoxiang ;
Ma, Kunyu ;
Zhou, Li ;
Yan, Bing .
CHEMICAL ENGINEERING JOURNAL, 2023, 474
[7]   Manganese oxide-carbon quantum dots nano-composites for fluorescence/magnetic resonance (T1) dual mode bioimaging, long term cell tracking, and ROS scavenging [J].
Das, Bodhisatwa ;
Girigoswami, Agnishwar ;
Pal, Pallabi ;
Dhara, Santanu .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2019, 102 :427-436
[8]   Nitrogen and copper-doped carbon quantum dots with intrinsic peroxidase-like activity for double-signal detection of phenol [J].
Du, Jinyan ;
Qi, Shuangqing ;
Fan, Tingting ;
Yang, Ying ;
Wang, Chaofeng ;
Shu, Qin ;
Zhuo, Shujuan ;
Zhu, Changqing .
ANALYST, 2021, 146 (13) :4280-4289
[9]   Preparation and characterization of B, S, and N-doped glucose carbon dots: Antibacterial, antifungal, and antioxidant activity [J].
Ezati, Parya ;
Rhim, Jong-Whan ;
Molaei, Rahim ;
Priyadarshi, Ruchir ;
Roy, Swarup ;
Min, Seungjae ;
Kim, Yeon Ho ;
Lee, Seok-Geun ;
Han, Sanghee .
SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2022, 32
[10]   Duplex metal co-doped carbon quantum dots-based drug delivery system with intelligent adjustable size as adjuvant for synergistic cancer therapy [J].
Han, Chuyi ;
Zhang, Xianming ;
Wang, Fan ;
Yu, Qinghua ;
Chen, Feng ;
Shen, Di ;
Yang, Zhangyou ;
Wang, Tingting ;
Jiang, Mingyue ;
Deng, Tao ;
Yu, Chao .
CARBON, 2021, 183 :789-808