Quantum metrology using quantum combs and tensor network formalism

被引:3
作者
Kurdzialek, Stanislaw [1 ]
Dulian, Piotr [1 ,2 ]
Majsak, Joanna [1 ,3 ]
Chakraborty, Sagnik [1 ,4 ]
Demkowicz-Dobrzanski, Rafal [1 ]
机构
[1] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
[2] Polish Acad Sci, Ctr Theoret Phys, Al Lotnikow 32-46, PL-02668 Warsaw, Poland
[3] Technol Innovat Inst, Quantum Res Ctr, Abu Dhabi, U Arab Emirates
[4] Univ Complutense, Fac Ciencias Fis, Dept Fis Teor, Madrid 28040, Spain
关键词
quantum metrology; quantum Fisher information; quantum combs; quantum processes; tensor networks; correlated noise; HEISENBERG LIMIT; STATES; NOISE;
D O I
10.1088/1367-2630/ada8d1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop an efficient algorithm for determining optimal adaptive quantum estimation protocols with arbitrary quantum control operations between subsequent uses of a probed channel.We introduce a tensor network representation of an estimation strategy, which drastically reduces the time and memory consumption of the algorithm, and allows us to analyze metrological protocols involving up to N = 50 qubit channel uses, whereas the state-of-the-art approaches are limited to N < 5. The method is applied to study the performance of the optimal adaptive metrological protocols in presence of various noise types, including correlated noise.
引用
收藏
页数:29
相关论文
共 84 条
[11]   Minimal computational-space implementation of multiround quantum protocols [J].
Bisio, Alessandro ;
D'Ariano, Giacomo Mauro ;
Perinotti, Paolo ;
Chiribella, Giulio .
PHYSICAL REVIEW A, 2011, 83 (02)
[12]   Optimal frequency measurements with maximally correlated states [J].
Bollinger, JJ ;
Itano, WM ;
Wineland, DJ ;
Heinzen, DJ .
PHYSICAL REVIEW A, 1996, 54 (06) :R4649-R4652
[13]  
BOYD S, 2004, CONVEX OPTIMIZATION
[14]   STATISTICAL DISTANCE AND THE GEOMETRY OF QUANTUM STATES [J].
BRAUNSTEIN, SL ;
CAVES, CM .
PHYSICAL REVIEW LETTERS, 1994, 72 (22) :3439-3443
[15]   Optimizing Performance of Quantum Operations with Non-Markovian Decoherence: The Tortoise or the Hare? [J].
Butler, Eoin P. ;
Fux, Gerald E. ;
Ortega-Taberner, Carlos ;
Lovett, Brendon W. ;
Keeling, Jonathan ;
Eastham, Paul R. .
PHYSICAL REVIEW LETTERS, 2024, 132 (06)
[16]   QUANTUM-MECHANICAL NOISE IN AN INTERFEROMETER [J].
CAVES, CM .
PHYSICAL REVIEW D, 1981, 23 (08) :1693-1708
[17]   TNQMetro: Tensor-network based package for efficient quantum metrology computations [J].
Chabuda, Krzysztof ;
Demkowicz-Dobrzanski, Rafal .
COMPUTER PHYSICS COMMUNICATIONS, 2022, 274
[18]   Tensor-network approach for quantum metrology in many-body quantum systems [J].
Chabuda, Krzysztof ;
Dziarmaga, Jacek ;
Osborne, Tobias J. ;
Demkowicz-Dobrzanski, Rafaf .
NATURE COMMUNICATIONS, 2020, 11 (01)
[20]   Theoretical framework for quantum networks [J].
Chiribella, Giulio ;
D'Ariano, Giacomo Mauro ;
Perinotti, Paolo .
PHYSICAL REVIEW A, 2009, 80 (02)