GLOBAL VS LOCAL RANDOM FOREST MODEL FOR WATER QUALITY MONITORING: ASSESSMENT IN FINGER LAKES USING SENTINEL-2 IMAGERY AND GLORIA DATASET

被引:2
作者
Khan, Rabia Munsaf [1 ]
Salehi, Bahram [1 ]
Niroumand-Jadidi, Milad [2 ]
Mandianpari, Masoud [3 ,4 ]
机构
[1] SUNY Coll Environm Sci & Forestry, Dept Environm Resources Engn, Syracuse, NY 13210 USA
[2] Fdn Bruno Kessler, Digital Soc Ctr, Via Sommarive 18, I-38123 Trento, Italy
[3] C CORE, St John, NL A1B 3X5, Canada
[4] Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NL A1B 3X5, Canada
来源
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024 | 2024年
关键词
GLORIA; Machine Learning; Secchi Disk Depth (Zsd); Sentinel-2; Water Clarity;
D O I
10.1109/IGARSS53475.2024.10641536
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Machine learning (ML) methods such as Random Forest (RF) have shown promises to estimate Secchi Disk Depth (Zsd). However, lack of a comprehensive dataset has been a long-lasting issue for training ML models in remote sensing of water quality. To aid the training process, the GLORIA dataset has recently provided access to hyperspectral in-situ measurements of remote sensing reflectance (Rrs) along with associated water quality parameters for globally representative inland and coastal waters. We use simulated Sentinel-2 Rrs to train a global model using GLORIA and then validate it on independent data from Finger Lakes, USA. When compared to RF model trained on Finger Lakes data, the validation results indicate better performance (Mean Absolute Error (MAE) 37%) as compared to the global model trained on GLORIA ( MAE 94%). However, when the global model was validated on independent dataset from GLORIA (i.e. Lake Erie), the results were promising (MAE 34%). Therefore, the models can be used to estimate Zsd globally, provided the uncertainties in deriving satellite based Rrs are accounted for.
引用
收藏
页码:4389 / 4392
页数:4
相关论文
共 13 条
[1]   Photosynthetic rates derived from satellite-based chlorophyll concentration [J].
Behrenfeld, MJ ;
Falkowski, PG .
LIMNOLOGY AND OCEANOGRAPHY, 1997, 42 (01) :1-20
[2]  
Breiman L., 2001, MACH LEARN, V45, P5
[3]   Remote-sensing assessment of regional inland lake water clarity in northeast China [J].
Duan, Hongtao ;
Ma, Ronghua ;
Zhang, Yuanzhi ;
Zhang, Bai .
LIMNOLOGY, 2009, 10 (02) :135-141
[4]   QUANTIFICATION AND MAPPING OF WATER CLARITY FOR FRESHWATER LAKES USING SENTINEL-2 DATA AND RANDOM FOREST REGRESSION MODEL: APPLICATION ON FINGER LAKES, NEW YORK [J].
Khan, Rabia Munsaf ;
Salehi, Bahram ;
Niroumand-Jadidi, Milad ;
Mahdianpari, Masoud .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :2890-2893
[5]   A Meta-Analysis on Harmful Algal Bloom (HAB) Detection and Monitoring: A Remote Sensing Perspective [J].
Khan, Rabia Munsaf ;
Salehi, Bahram ;
Mahdianpari, Masoud ;
Mohammadimanesh, Fariba ;
Mountrakis, Giorgos ;
Quackenbush, Lindi J. .
REMOTE SENSING, 2021, 13 (21)
[6]  
Lehmann MK, 2023, SCI DATA, V10, DOI 10.1038/s41597-023-01973-y
[7]   Towards global long-term water transparency products from the Landsat archive [J].
Maciel, Daniel A. ;
Pahlevan, Nima ;
Barbosa, Claudio C. F. ;
Martins, Vitor S. ;
Smith, Brandon ;
O'Shea, Ryan E. ;
Balasubramanian, Sundarabalan, V ;
Saranathan, Arun M. ;
Novo, Evlyn M. L. M. .
REMOTE SENSING OF ENVIRONMENT, 2023, 299
[8]   Water clarity in Brazilian water assessed using Sentinel-2 and machine learning methods [J].
Maciel, Daniel Andrade ;
Faria Barbosa, Claudio Clemente ;
Leao de Moraes Novo, Evlyn Marcia ;
Flores Junior, Rogerio ;
Begliomini, Felipe Nincao .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 182 :134-152
[9]   Aquatic color radiometry remote sensing of coastal and inland waters: Challenges and recommendations for future satellite missions [J].
Mouw, Colleen B. ;
Greb, Steven ;
Aurin, Dirk ;
DiGiacomo, Paul M. ;
Lee, Zhongping ;
Twardowski, Michael ;
Binding, Caren ;
Hu, Chuanmin ;
Ma, Ronghua ;
Moore, Timothy ;
Moses, Wesley ;
Craig, Susanne E. .
REMOTE SENSING OF ENVIRONMENT, 2015, 160 :15-30
[10]   Monitoring inland water quality using remote sensing: potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing [J].
Sagan, Vasit ;
Peterson, Kyle T. ;
Maimaitijiang, Maitiniyazi ;
Sidike, Paheding ;
Sloan, John ;
Greeling, Benjamin A. ;
Maalouf, Samar ;
Adams, Craig .
EARTH-SCIENCE REVIEWS, 2020, 205