Cellulose nanofibers reinforced carboxylated nitrile butadiene rubber coatings for improved corrosion protection of mild steel

被引:0
作者
Yue, Panpan [1 ]
Zhang, Yiqianru [1 ]
Ullah, Zain [1 ]
Zhang, Min [1 ]
Zhao, Ting [1 ]
Liu, Peng [1 ]
Peng, Feng [2 ]
Yang, Liuqing [1 ]
机构
[1] Jiangsu Univ, Sch Chem & Chem Engn, 301 Xuefu Rd, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Beijing Forestry Univ, Coll Mat Sci & Technol, MOE Engn Res Ctr Forestry Biomass Mat & Bioenergy, Beijing Key Lab Lignocellulos Chem, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Cellulose nanofibers; Carboxylated nitrile butadiene rubber; Anticorrosion coating; FILMS;
D O I
10.1016/j.ijbiomac.2025.139472
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The development of an efficient coating with comprehensive antimicrobial and anticorrosion properties for metals is crucial. The present study used a one-pot strategy to fabricate a high-performance nanocomposite coating of carboxylated nitrile butadiene rubber/cellulose nanofibers/zinc oxide (XNBR/CNF-ZnO), demonstrating excellent potential for application in the protection against metal corrosion. Eco-friendly CNF-ZnO nanomaterials, prepared using the in-situ generation method, were used as reinforcing fillers, while XNBR was used as the matrix material. The incorporation of CNF-ZnO nanofillers notably increased the crosslink density of the composites, and thus significantly improved the interfacial compatibility between the XNBR matrix and the nanofillers. Also, the XNBR/CNF-ZnO composites exhibited significant improvements in solvent resistance, abrasion resistance, antimicrobial properties, and metal anticorrosion properties. We further elucidated the mechanism of interaction between the matrix and the nanofillers as well as the corresponding performance enhancement mechanism. This study presents a novel approach for developing multifunctional anticorrosive coatings, which holds significant potential for advancing research in metal corrosion protection.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Influence of Zn concentration on zinc oxide nanoparticles and their anti-corrosion property [J].
Aboorvakani, R. ;
Vethanathan, S. John Kennady ;
Madhu, K. U. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 834
[2]   Improving the Mechanical/Anticorrosive Properties of a Nitrile Rubber-Based Adhesive Filled with Cerium Oxide Nanoparticles Using a Two-Step Surface Modification Method [J].
Afshari, Babak Biuk ;
Jamshidi, Masoud ;
Rostami, Mehran ;
Ghamarpoor, Reza .
ACS OMEGA, 2022, 7 (49) :44912-44927
[3]   Infrared dielectric functions and phonon modes of high-quality ZnO films [J].
Ashkenov, N ;
Mbenkum, BN ;
Bundesmann, C ;
Riede, V ;
Lorenz, M ;
Spemann, D ;
Kaidashev, EM ;
Kasic, A ;
Schubert, M ;
Grundmann, M ;
Wagner, G ;
Neumann, H ;
Darakchieva, V ;
Arwin, H ;
Monemar, B .
JOURNAL OF APPLIED PHYSICS, 2003, 93 (01) :126-133
[4]   Preparation and characterizations of oil palm fronds cellulose nanocrystal (OPF-CNC) as reinforcing filler in epoxy-Zn rich coating for mild steel corrosion protection [J].
Azani, Nur Fatin Silmi Mohd ;
Haafiz, M. K. Mohamad ;
Zahari, Azeana ;
Poinsignon, Sophie ;
Brosse, Nicolas ;
Hussin, M. Hazwan .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2020, 153 :385-398
[5]   Enhanced compatibility, morphology, rheological and mechanical properties of carboxylated acrylonitrile butadiene rubber/chloroprene rubber/graphene nanocomposites: effect of compatibilizer and graphene content [J].
Azizli, Mohammad Javad ;
Rezaeinia, Sheida ;
Rezaeeparto, Katayoon ;
Mokhtary, Masoud ;
Askari, Fahimeh .
RSC ADVANCES, 2020, 10 (20) :11777-11790
[6]   Preparation and characterization of carboxylated acrylonitrile butadiene rubber/carboxylated styrene butadiene rubber (XNBR/XSBR) nanocomposites in the presence of dichlorocarbene-modified SBR (DCSBR) compatibilizer and montmorillonite [J].
Azizli, Mohammad Javad ;
Parham, Somayeh ;
Abbasizadeh, Saeed ;
Mokhtary, Masoud ;
Rezaeinia, Sheida ;
Darabi, Mehdi Jokeri .
POLYMER BULLETIN, 2021, 78 (03) :1637-1669
[7]   Novel anti-corrosion coatings from rubber-modified polybenzoxazine-based polyaniline composites [J].
Caldona, Eugene B. ;
de Leon, Al Christopher C. ;
Pajarito, Bryan B. ;
Advincula, Rigoberto C. .
APPLIED SURFACE SCIENCE, 2017, 422 :162-171
[8]   Dual strengthening strategy to fabricate structurally enhanced cellulose nanofiber composite membranes for stabilized emulsion separation [J].
Chen, Hao ;
Wu, Haonan ;
Chen, Yongfang ;
Yue, Xuejie ;
Qiu, Fengxian ;
Zhang, Tao .
CELLULOSE, 2024, 31 (12) :7449-7465
[9]   Sustainable one-pot synthesis of novel soluble cellulose-based nonionic biopolymers for natural antimicrobial materials [J].
Dang, Xugang ;
Yu, Zhenfu ;
Wang, Xuechuan ;
Du, Yongmei ;
Wang, Caihong .
CHEMICAL ENGINEERING JOURNAL, 2023, 468
[10]   Biopolymeric Anticorrosion Coatings from Cellulose Nanofibrils and Colloidal Lignin Particles [J].
Dastpak, Arman ;
Ansell, Philip ;
Searle, Justin R. ;
Lundstrom, Mari ;
Wilson, Benjamin P. .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (34) :41034-41045