Micro-LED Retinal Projection for Augmented Reality Near-Eye Displays

被引:0
作者
Jin, Huajian [1 ,2 ]
Lin, Zijian [1 ]
Lai, Wenzong [1 ]
Jiang, Haonan [2 ,4 ,5 ]
Cai, Junhu [1 ]
Chen, Hao [1 ]
Hao, Weijie [1 ,2 ]
Ye, Yun [1 ,2 ,3 ]
Xu, Sheng [1 ,2 ,3 ]
Yan, Qun [1 ,2 ,3 ]
Guo, Tailiang [1 ,3 ]
Chen, Enguo [1 ,2 ,3 ]
机构
[1] Fuzhou Univ, Coll Phys & Informat Engn, Natl & Local United Engn Lab Flat Panel Display T, Fuzhou 350108, Fujian, Peoples R China
[2] Fuzhou Univ, Sch Adv Mfg, Quanzhou 362200, Fujian, Peoples R China
[3] Fujian Sci Technol Innovat Lab Optoelect Informat, Fuzhou 350108, Fujian, Peoples R China
[4] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, State Key Lab Adv Displays & Optoelect Technol, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China
[5] Hong Kong Univ Sci & Technol, Ctr Display Res, Dept Elect & Comp Engn, Kowloon, Clear Water Bay, Hong Kong 999077, Peoples R China
关键词
augmented reality; imaging fiber bundle; micro-LED; optoelectronic separation; retinal projection display; FIELD-OF-VIEW; HEAD-MOUNTED DISPLAY; VIRTUAL-REALITY; TECHNOLOGIES; DESIGN;
D O I
10.1002/lpor.202402083
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Retinal projection display enables the direct projection of virtual images onto the retina through the pupil center via a projection engine, showing promise in addressing the vergence-accommodation conflict in augmented reality near-eye displays. However, existing RPD architectures universally employ passive luminous micro-electromechanical systems or spatial light modulators, encountering challenges associated with beam aperture limitations and structural inflexibility. In response to these, this paper presents a novel micro-LED retinal projection display architecture that integrates the active luminous full-color micro-LEDs with a pixel-to-pixel imaging fiber bundle, effectively subverting conventional RPD designs. Additionally, the flexible fiber bundle brings an adaptable design that enables optoelectronic separation capabilities. The design principles and feasibility are thoroughly described and validated through simulations and experiments. A full-color mu RPD prototype is developed, demonstrating sharp imaging across an extensive focal depth range. Remarkably, the mu RPD architecture exhibits a groundbreaking advancement in enabling underwater AR displays without necessitating special waterproof treatments, underscoring its potential versatility and adaptability to challenging environments. This design paves a new way for practical applications of NEDs in complex and demanding conditions, thereby contributing to the evolution of NED systems.
引用
收藏
页数:9
相关论文
共 49 条
[1]  
Maimone A., Georgiou A., Kollin J.S., ACM T Graphic., 36, (2017)
[2]  
Zhan T., Yin K., Xiong J., He Z., Wu S.T., iScience, 23, (2020)
[3]  
Chang C., Bang K., Wetzstein G., Lee B., Gao L., Optica, 7, (2020)
[4]  
Yin K., He Z., Xiong J., Zou J., Li K., Wu S.T., J. Phys.: Photonics., 3, (2021)
[5]  
Xiong J., Hsiang E.L., He Z., Zhan T., Wu S.T., Light: Sci. Appl., 10, (2021)
[6]  
Cheng D., Wang Q., Liu Y., Chen H., Ni D., Wang X., Yao C., Hou Q., Hou W., Luo G., Wang Y., Light.: Adv. Manuf., 2, (2021)
[7]  
He Z., Sui X., Jin G., Cao L., Appl. Opt., 58, (2019)
[8]  
Xiong J., Yin K., Li K., Wu S.T., Adv. Photonics Res., 2, (2021)
[9]  
Wang Y., Liu W., Meng X., Fu H., Zhang D., Kang Y., Feng R., Wei Z., Zhu X., Jiang G., Appl. Opt., 55, (2016)
[10]  
Sutherland I.E., IEEE Comput. Soc., 110, (1968)