High-entropy V-based cathode for high-capacity and long-life aqueous zinc-ion battery

被引:0
|
作者
Ding, Xiang [1 ]
Zhu, Qiaoying [1 ,3 ]
Fan, Yong [1 ]
Yang, Yibing [2 ]
Liu, Liangwei [2 ]
Shao, Yu [4 ]
Xiao, Yi [2 ]
Wu, Chih-Hung [3 ]
Han, Lili [2 ]
机构
[1] Fujian Normal Univ, Coll Chem & Mat Sci, Fuzhou 350007, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[3] Sanming Univ, Sch Resources & Chem Engn, Sanming 365004, Fujian, Peoples R China
[4] Jiujiang Fu Technol Co LTD, Jiujiang 332000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc-ion batteries; V 2 O 5 & sdot; 0.48H; 2; O; High-entropy design; High-capacity; High-stability; V2O5; OXIDES;
D O I
10.1016/j.nanoen.2025.110701
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered hydrated V2O5 & sdot;xH2O cathodes are endowed with the advantage of sufficient theoretical specific capacity (589 mA h g- 1) in aqueous zinc-ion batteries (AZIBs), yet accompanied by poor bulk conductivity and structural collapse during long-periodic cycling. Herein, we design a series of high-entropy doped V2O5 & sdot;0.48 H2O by incorporating Na+/Al3+/Ni2+/NH4+/F- into interlayer simultaneously. In-situ XRD and in-situ DRT analyses profoundly elucidate the enormously enhanced structural reversibility/stability and faster electron/ion transfer efficiency derived from the high-entropy effects. DFT calculations clarify the augmented bulk electronic conductivity stemming from the more abundant electron cloud density near the Fermi level and more conduction and valence bands available for transition. Benefiting from the high-entropy design, the optimal cathode in coincells can display competitive discharge capacity of 546 mA h g- 1 at 0.1 C, rate capabilities (458 mA h g- 1@1 C; 322 mA h g- 1@10 C), and cyclic stability (5000 cycles@10 C@98 % retention). Also, the pouch-cells with highload (65 mg) also deliver superior cyclic and rate performance at both room (190 mA h g- 1@1000 cycles@86.8 % retention; 25 degrees C) and low temperature (171 mA h g- 1@200 cycles@82.3 % retention; -20 degrees C), manifesting valuable insights for designing ultra-high-capacity V-based cathodes with long-life stability for AZIBs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Graphene Oxide Wrapped CuV2O6 Nanobelts as High-Capacity and Long-Life Cathode Materials of Aqueous Zinc-Ion Batteries
    Liu, Yuyi
    Li, Qian
    Ma, Kaixuan
    Yang, Gongzheng
    Wang, Chengxin
    ACS NANO, 2019, 13 (10) : 12081 - 12089
  • [22] Electrochemical Zinc Intercalation in Lithium Vanadium Oxide: A High-Capacity Zinc-Ion Battery Cathode
    Alfaruqi, Muhammad H.
    Mathew, Vinod
    Song, Jinju
    Kim, Sungjin
    Islam, Saiful
    Pham, Duong Tung
    Jo, Jeonggeun
    Kim, Seokhun
    Baboo, Joseph Paul
    Xiu, Zhiliang
    Lee, Kug-Seung
    Sun, Yang-Kook
    Kim, Jaekook
    CHEMISTRY OF MATERIALS, 2017, 29 (04) : 1684 - 1694
  • [23] A high-capacity organic cathode based on active N atoms for aqueous zinc-ion batteries
    Zhang, Shuoqing
    Long, Songtao
    Li, Huan
    Xu, Qiang
    CHEMICAL ENGINEERING JOURNAL, 2020, 400
  • [24] Novel Charging-Optimized Cathode for a Fast and High-Capacity Zinc-Ion Battery
    Li, Zhi
    Wu, Buke
    Yan, Mengyu
    He, Liang
    Xu, Lin
    Zhang, Guobin
    Xiong, Tengfei
    Luo, Wen
    Mai, Liqiang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (09) : 10420 - 10427
  • [25] V2O5 nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery
    Li, Yankai
    Huang, Zhimei
    Kalambate, Pramod K.
    Zhong, Yun
    Huang, Zhaoming
    Xie, Meilan
    Shen, Yue
    Huang, Yunhui
    NANO ENERGY, 2019, 60 (752-759) : 752 - 759
  • [26] β-MnO2 nanolayer coated on carbon cloth as a high-activity aqueous zinc-ion battery cathode with high-capacity and long-cycle-life
    Deng, Zhihong
    Huang, Jingdong
    Liu, Jun
    Ren, Lu
    Zhu, Lingze
    Xiao, Xinyu
    Tan, Mixue
    MATERIALS LETTERS, 2019, 248 : 207 - 210
  • [27] A high-capacity aqueous zinc-ion battery fiber with air-recharging capability
    Liao, Meng
    Wang, Jiawei
    Ye, Lei
    Sun, Hao
    Li, Pengzhou
    Wang, Chuang
    Tang, Chengqiang
    Cheng, Xiangran
    Wang, Bingjie
    Peng, Huisheng
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (11) : 6811 - 6818
  • [28] A high-capacity and long-life aqueous rechargeable zinc battery using a porous metal-organic coordination polymer nanosheet cathode
    Wu, Shan
    Wang, Yi-Fan
    Liu, Wei-Liang
    Ren, Man-Man
    Kong, Fan-Gong
    Wang, Shou-Juan
    Wang, Xin-Qiang
    Zhao, Hui
    Bao, Jin-Ming
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (12): : 3067 - 3073
  • [29] High-capacity K plus -pillared layered manganese dioxide as cathode material for high-rate aqueous zinc-ion battery
    Song, Ailing
    Zhao, Jinghao
    Qiao, Chunting
    Ding, Yali
    Tian, Guoxing
    Fan, Yuqian
    Ma, Zhipeng
    Dai, Lei
    Shao, Guangjie
    Liu, Zhaoping
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 674 : 336 - 344
  • [30] Long-Life Pillar[5]quinone Cathode for Aqueous Zinc-Ion Batteries
    Yesilot, Serkan
    Solmaz, Yasemin
    Kilic, Nazmiye
    Unal, Burcu
    Sel, Ozlem
    Demir-Cakan, Rezan
    CHEMELECTROCHEM, 2024, 11 (14):