High-entropy V-based cathode for high-capacity and long-life aqueous zinc-ion battery

被引:1
|
作者
Ding, Xiang [1 ]
Zhu, Qiaoying [1 ,3 ]
Fan, Yong [1 ]
Yang, Yibing [2 ]
Liu, Liangwei [2 ]
Shao, Yu [4 ]
Xiao, Yi [2 ]
Wu, Chih-Hung [3 ]
Han, Lili [2 ]
机构
[1] Fujian Normal Univ, Coll Chem & Mat Sci, Fuzhou 350007, Fujian, Peoples R China
[2] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[3] Sanming Univ, Sch Resources & Chem Engn, Sanming 365004, Fujian, Peoples R China
[4] Jiujiang Fu Technol Co LTD, Jiujiang 332000, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous zinc-ion batteries; V 2 O 5 & sdot; 0.48H; 2; O; High-entropy design; High-capacity; High-stability; V2O5; OXIDES;
D O I
10.1016/j.nanoen.2025.110701
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered hydrated V2O5 & sdot;xH2O cathodes are endowed with the advantage of sufficient theoretical specific capacity (589 mA h g- 1) in aqueous zinc-ion batteries (AZIBs), yet accompanied by poor bulk conductivity and structural collapse during long-periodic cycling. Herein, we design a series of high-entropy doped V2O5 & sdot;0.48 H2O by incorporating Na+/Al3+/Ni2+/NH4+/F- into interlayer simultaneously. In-situ XRD and in-situ DRT analyses profoundly elucidate the enormously enhanced structural reversibility/stability and faster electron/ion transfer efficiency derived from the high-entropy effects. DFT calculations clarify the augmented bulk electronic conductivity stemming from the more abundant electron cloud density near the Fermi level and more conduction and valence bands available for transition. Benefiting from the high-entropy design, the optimal cathode in coincells can display competitive discharge capacity of 546 mA h g- 1 at 0.1 C, rate capabilities (458 mA h g- 1@1 C; 322 mA h g- 1@10 C), and cyclic stability (5000 cycles@10 C@98 % retention). Also, the pouch-cells with highload (65 mg) also deliver superior cyclic and rate performance at both room (190 mA h g- 1@1000 cycles@86.8 % retention; 25 degrees C) and low temperature (171 mA h g- 1@200 cycles@82.3 % retention; -20 degrees C), manifesting valuable insights for designing ultra-high-capacity V-based cathodes with long-life stability for AZIBs.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Sodium vanadate microflowers as cathode for high-capacity and long-life aqueous zinc-ion battery
    Wang, Guanqin
    Wang, Chunlin
    Liu, Zigang
    Li, Qiang
    Wang, Ruichun
    Li, Feiyang
    Wang, Yuehe
    Song, Weiheng
    Yang, Yongqi
    Qin, Xinghua
    SOLID STATE IONICS, 2022, 384
  • [2] A high-entropy zero-strain V-based cathode for high performance aqueous zinc-ion batteries
    Ding, Xiang
    Le, Jinrong
    Yang, Yibing
    Liu, Liangwei
    Shao, Yu
    Xiao, Yi
    Li, Yin
    Han, Lili
    ENERGY STORAGE MATERIALS, 2025, 76
  • [3] High-Capacity and Long-Life Manganese Vanadium Oxide Composite as a Cathode for Aqueous Zinc-Ion Batteries
    Narsimulu, D.
    Krishna, B. N. Vamsi
    Shanthappa, R.
    Bandi, Hari
    Yu, Jae Su
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (18)
  • [4] A High-Capacity Ammonium Vanadate Cathode for Zinc-Ion Battery
    Qifei Li
    Xianhong Rui
    Dong Chen
    Yuezhan Feng
    Ni Xiao
    Liyong Gan
    Qi Zhang
    Yan Yu
    Shaoming Huang
    Nano-Micro Letters, 2020, 12
  • [5] High capacity and long-life aqueous zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode
    Li, Zhiheng
    Tan, Jian
    Zhu, Xiaodong
    Xie, Sijun
    Fang, Huayi
    Ye, Mingxin
    Shen, Jianfeng
    ENERGY STORAGE MATERIALS, 2022, 51 : 294 - 305
  • [6] Graphene Oxide Wrapped CuV2O6 Nanobelts as High-Capacity and Long-Life Cathode Materials of Aqueous Zinc-Ion Batteries
    Liu, Yuyi
    Li, Qian
    Ma, Kaixuan
    Yang, Gongzheng
    Wang, Chengxin
    ACS NANO, 2019, 13 (10) : 12081 - 12089
  • [7] High-Capacity Calcium Vanadate Composite with Long-Term Cyclability as a Cathode Material for Aqueous Zinc-Ion Batteries
    Narsimulu, Daulatabad
    Shanthappa, Ragammanavara
    Bandi, Hari
    Yu, Jae Su
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (34) : 12571 - 12582
  • [8] Electrochemical zinc and hydrogen co-intercalation in Li3(V6O16): A high-capacity aqueous zinc-ion battery cathode
    Ran, Yan
    Ren, Jie
    Kong, Yulin
    Wang, Bingsen
    Xiao, Xuechun
    Wang, Yude
    ELECTROCHIMICA ACTA, 2022, 412
  • [9] Long-Life Pillar[5]quinone Cathode for Aqueous Zinc-Ion Batteries
    Yesilot, Serkan
    Solmaz, Yasemin
    Kilic, Nazmiye
    Unal, Burcu
    Sel, Ozlem
    Demir-Cakan, Rezan
    CHEMELECTROCHEM, 2024, 11 (14):
  • [10] Simultaneous Cationic and Anionic Redox Reactions Mechanism Enabling High-Rate Long-Life Aqueous Zinc-Ion Battery
    Fang, Guozhao
    Hang, Shuquan
    Chen, Zixian
    Cui, Peixin
    Zheng, Xusheng
    Pan, Anqiang
    Lu, Bingan
    Lu, Xihong
    Zhou, Jiang
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (44)