PF-Net: Point Fractal Network for 3D Point Cloud Completion

被引:347
作者
Huang, Zitian [1 ]
Yu, Yikuan [1 ,2 ]
Xu, Jiawen [1 ]
Ni, Feng [2 ]
Le, Xinyi [1 ]
机构
[1] Shanghai Jiao Tong Univ, Shanghai, Peoples R China
[2] SenseTime, Hong Kong, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
D O I
10.1109/CVPR42600.2020.00768
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a Point Fractal Network (PF-Net), a novel learning-based approach for precise and highfidelity point cloud completion. Unlike existing point cloud completion networks, which generate the overall shape of the point cloud from the incomplete point cloud and always change existing points and encounter noise and geometrical loss, PF-Net preserves the spatial arrangements of the incomplete point cloud and can figure out the detailed geometrical structure of the missing region(s) in the prediction. To succeed at this task, PF-Net estimates the missing point cloud hierarchically by utilizing a feature-points-based multi-scale generating network. Further, we add up multi-stage completion loss and adversarial loss to generate more realistic missing region(s). The adversarial loss can better tackle multiple modes in the prediction. Our experiments demonstrate the effectiveness of our method for several challenging point cloud completion tasks.
引用
收藏
页码:7659 / 7667
页数:9
相关论文
共 37 条
[1]  
Achlioptas P, 2018, PR MACH LEARN RES, V80
[2]  
Birdal T, 2017, IEEE INT C INT ROBOT, P6871, DOI 10.1109/IROS.2017.8206609
[3]   Cascade R-CNN: Delving into High Quality Object Detection [J].
Cai, Zhaowei ;
Vasconcelos, Nuno .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6154-6162
[4]   Hybrid Task Cascade for Instance Segmentation [J].
Chen, Kai ;
Pang, Jiangmiao ;
Wang, Jiaqi ;
Xiong, Yu ;
Li, Xiaoxiao ;
Sun, Shuyang ;
Feng, Wansen ;
Liu, Ziwei ;
Shi, Jianping ;
Ouyang, Wanli ;
Loy, Chen Change ;
Lin, Dahua .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4969-4978
[5]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[6]   A Point Set Generation Network for 3D Object Reconstruction from a Single Image [J].
Fan, Haoqiang ;
Su, Hao ;
Guibas, Leonidas .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2463-2471
[7]  
Feng YF, 2019, AAAI CONF ARTIF INTE, P3558
[8]   Multiresolution Tree Networks for 3D Point Cloud Processing [J].
Gadelha, Matheus ;
Wang, Rui ;
Maji, Subhransu .
COMPUTER VISION - ECCV 2018, PT VII, 2018, 11211 :105-122
[9]   Generative Adversarial Networks [J].
Goodfellow, Ian ;
Pouget-Abadie, Jean ;
Mirza, Mehdi ;
Xu, Bing ;
Warde-Farley, David ;
Ozair, Sherjil ;
Courville, Aaron ;
Bengio, Yoshua .
COMMUNICATIONS OF THE ACM, 2020, 63 (11) :139-144
[10]   High-Resolution Shape Completion Using Deep Neural Networks for Global Structure and Local Geometry Inference [J].
Han, Xiaoguang ;
Li, Zhen ;
Huang, Haibin ;
Kalogerakis, Evangelos ;
Yu, Yizhou .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :85-93