Asymptotics for fractional reaction diffusion equations in periodic media

被引:0
作者
Wei, Yu [1 ]
Wang, Yahan [1 ]
Lu, Huiqin [1 ]
机构
[1] Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R China
来源
AIMS MATHEMATICS | 2025年 / 10卷 / 02期
关键词
generalized fractional Laplacian; convolution; semigroup theory; asymptotics; PROPAGATION;
D O I
10.3934/math.2025177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the Cauchy problem for a class of reaction diffusion equations are considered with nonlocal interactions in periodic media. First, we demonstrate the existence and uniqueness of solutions that are both positive and bounded for the stationary equation. Second, we derive results concerning the existence and uniqueness of solutions for the Cauchy problem by using the semigroup theory. Finally, we analyze the behavior of the solutions to the Cauchy problem for large times by using the comparison principle.
引用
收藏
页码:3819 / 3835
页数:17
相关论文
共 26 条
[1]  
Fisher R. A., The wave of advance of advantageous genes, Ann. Hum. Genet, 7, pp. 335-369, (1937)
[2]  
Kolmogorov A. N., A study of the equation of diffusion with increase in the quantity of matter, and its application to a biological problem, Mosc. Univ. Bull. Math, 1, pp. 1-25, (1937)
[3]  
Du Y. H., Matano H., Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc, 12, pp. 279-312, (2010)
[4]  
Garnier J., Accelerating solutions in integro-differential equations, SIAM J. Math. Anal, 43, pp. 1955-1974, (2011)
[5]  
Chasseigne E., Chaves M., Rossi J. D., Asymptotic behavior for nonlocal diffusion equations, J. Math. Pures Appl, 86, pp. 271-291, (2006)
[6]  
Berestycki H., Hamel F., Nadirashvili N., Elliptic eigenvalue problems with large drift and applications to nonlinear propagation phenomena, Commun. Math. Phys, 253, pp. 451-480, (2005)
[7]  
Cabre X., Roquejoffre J. M., The infuence of fractional diffusion in Fisher-KPP equations, Commun. Math. Phys, 320, pp. 679-722, (2013)
[8]  
Coville J., Gui C. F., Zhao M. F., Propagation acceleration in reaction diffusion equations with anomalous diffusions, Nonlinearity, 34, (2021)
[9]  
Humphries N. E., Queiroz N., Dyer J. R. M., Pade N. G., Musyl M. K., Schaefer K. M., Et al., Environmental context explains Lévy and Brownian movement patterns of marine predators, Nature, 465, pp. 1066-1069, (2010)
[10]  
Cabre X., Roquejoffre J. M., Propagation de fronts dans les équations de Fisher-KPP avec diffusion fractionnaire, C. R. Math, 347, pp. 1361-1366, (2009)