Streamflow prediction using artificial neural networks and soil moisture proxies

被引:0
|
作者
Rouse, Robert Edwin [1 ]
Khamis, Doran [2 ]
Hosking, Scott [3 ,4 ]
Mcrobie, Allan
Shuckburgh, Emily [5 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] UK Ctr Ecol & Hydrol, Wallingford OX10 8BB, England
[3] British Antarctic Survey, Cambridge CB3 0ET, England
[4] Alan Turing Inst, London NW1 2DB, England
[5] Univ Cambridge, Dept Comp Sci & Technol, Cambridge CB3 0FD, England
来源
基金
英国工程与自然科学研究理事会;
关键词
artificial neural networks; hydrology; machine learning; streamflow; SYSTEME HYDROLOGIQUE EUROPEEN; INSTANTANEOUS PEAK FLOW; SHE; UNCERTAINTY;
D O I
10.1017/eds.2024.48.pr4; 10.1017/eds.2024.48.pr12; 10.1017/eds.2024.48.pr13; 10.1017/eds.2024.48.pr14; 10.1017/eds.2024.48; 10.1017/eds.2024.48.pr1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Machine learning models have been used extensively in hydrology, but issues persist with regard to their transparency, and there is currently no identifiable best practice for forcing variables in streamflow or flood modeling. In this paper, using data from the Centre for Ecology & Hydrology's National River Flow Archive and from the European Centre for Medium-Range Weather Forecasts, we present a study that focuses on the input variable set for a neural network streamflow model to demonstrate how certain variables can be internalized, leading to a compressed feature set. By highlighting this capability to learn effectively using proxy variables, we demonstrate a more transferable framework that minimizes sensing requirements and that enables a route toward generalizing models.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Prediction of moisture in cheese of commercial production using neural networks
    Jimenez-Marquez, SA
    Thibault, J
    Lacroix, C
    INTERNATIONAL DAIRY JOURNAL, 2005, 15 (11) : 1156 - 1174
  • [42] Prediction of hydrocyclone performance using artificial neural networks
    Karimi, M.
    Dehghani, A.
    Nezamalhosseini, A.
    Talebi, Sh
    JOURNAL OF THE SOUTH AFRICAN INSTITUTE OF MINING AND METALLURGY, 2010, 110 (05): : 207 - 212
  • [43] Stability Prediction of ΔΣ Modulators using Artificial Neural Networks
    Kaesser, Paul
    Kaltenstadler, Sebastian
    Conrad, Joschua
    Wagner, Johannes
    Ismail, Omar
    Ortmanns, Maurits
    2024 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS 2024, 2024,
  • [44] Prediction of Sediment Concentration Using Artificial Neural Networks
    Dogan, Emrah
    TEKNIK DERGI, 2009, 20 (01): : 4567 - 4582
  • [45] Time series prediction using artificial neural networks
    Pérez-Chavarríia, MA
    Hidalgo-Silva, HH
    Ocampo-Torres, FJ
    CIENCIAS MARINAS, 2002, 28 (01) : 67 - 77
  • [46] Prediction of extrudate properties using artificial neural networks
    Shankar, T. J.
    Bandyopadhyay, S.
    FOOD AND BIOPRODUCTS PROCESSING, 2007, 85 (C1) : 29 - 33
  • [47] Prediction of groundwater drawdown using artificial neural networks
    Vahid Gholami
    Hossein Sahour
    Environmental Science and Pollution Research, 2022, 29 : 33544 - 33557
  • [48] Prediction of properties of rubber by using artificial neural networks
    Vijayabaskar, V
    Gupta, R
    Chakrabarti, PP
    Bhowmick, AK
    JOURNAL OF APPLIED POLYMER SCIENCE, 2006, 100 (03) : 2227 - 2237
  • [49] Lactose Intolerance Prediction Using Artificial Neural Networks
    Spahic, Lemana
    Sehovic, Emir
    Secerovic, Alem
    Dozic, Zerina
    Smajlovic-Skenderagic, Lejla
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, CMBEBIH 2019, 2020, 73 : 505 - 510
  • [50] Prediction of tunnel convergence using Artificial Neural Networks
    Mahdevari, Satar
    Torabi, Seyed Rahman
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2012, 28 : 218 - 228