Flow-Based Localization and Mapping for Multi-Robot Systems

被引:0
作者
Kumar, Arjun [1 ]
Silva, Thales C. [1 ]
Edwards, Victoria [1 ]
Hsieh, M. Ani [1 ]
机构
[1] Univ Penn, Grasp Lab, Philadelphia, PA 19104 USA
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2025年 / 10卷 / 04期
关键词
Simultaneous localization and mapping; Trajectory; Robot kinematics; Odometry; Location awareness; Noise measurement; Oceans; Dictionaries; Sea measurements; Mathematical models; Multi-robot SLAM; marine robotics; localization; and mapping; AUTONOMOUS FLIGHT; SLAM;
D O I
10.1109/LRA.2025.3540383
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
This letter addresses the problem of Multi-Robot Simultaneous Localization and Mapping (SLAM) in dynamic feature-free marine environments. Traditional SLAM approaches rely on static environmental features, which are often scarce in marine environments, hindering their applicability in aquatic environments like rivers, lakes, and oceans. We propose a localization and mapping formulation that jointly optimizes robot odometry, relative robot bearings, and estimates of dynamic environmental flow parameters using state-of-the-art parameter estimation techniques like Sparse Identification of Nonlinear Dynamics (SINDy) (Brunton et al., 2016). Our approach not only provides an accurate flow field map but it also enhances pose estimation of multiple minimally actuated robots transported by the flow (Subbaraya et al., 2016), (Molchanov et al., 2015). We showcase our methodology on a series of increasingly dynamically complex flow fields including the Duffing oscillator, the wind-driven double-gyre, and real ocean data from the Gulf of Mexico.
引用
收藏
页码:3278 / 3285
页数:8
相关论文
共 42 条
  • [1] Discovering governing equations from data by sparse identification of nonlinear dynamical systems
    Brunton, Steven L.
    Proctor, Joshua L.
    Kutz, J. Nathan
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (15) : 3932 - 3937
  • [2] LiDAR-Based Object-Level SLAM for Autonomous Vehicles
    Cao, Bingyi
    Mendoza, Ricardo Carrillo
    Philipp, Andreas
    Gohring, Daniel
    [J]. 2021 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2021, : 4397 - 4404
  • [3] Chambers A, 2011, IEEE INT C INT ROBOT, P227, DOI 10.1109/IROS.2011.6048799
  • [4] SLOAM: Semantic Lidar Odometry and Mapping for Forest Inventory
    Chen, Steven W.
    Nardari, Guilherme, V
    Lee, Elijah S.
    Qu, Chao
    Liu, Xu
    Romero, Roseli Ap Francelin
    Kumar, Vijay
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02): : 612 - 619
  • [5] UPSLAM: Union of Panoramas SLAM
    Cowley, Anthony
    Miller, Ian D.
    Taylor, Camillo Jose
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 1103 - 1109
  • [6] Dellaert F., 2017, Foundations and Trends in Robotics, V6, P1
  • [7] DELLAERT F, 2012, GT-RIM-CP&R-2012-002
  • [8] Stranding Risk for Underactuated Vessels in Complex Ocean Currents: Analysis and Controllers
    Doering, Andreas
    Wiggert, Marius
    Krasowski, Hanna
    Doshi, Manan
    Lermusiaux, Pierre F. J.
    Tomlin, Claire J.
    [J]. 2023 62ND IEEE CONFERENCE ON DECISION AND CONTROL, CDC, 2023, : 7055 - 7060
  • [9] Energy-time optimal path planning in dynamic flows: Theory and schemes
    Doshi, Manan M.
    Bhabra, Manmeet S.
    Lermusiaux, Pierre F. J.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 405
  • [10] Present and Future of SLAM in Extreme Environments: The DARPA SubT Challenge
    Ebadi, Kamak
    Bernreiter, Lukas
    Biggie, Harel
    Catt, Gavin
    Chang, Yun
    Chatterjee, Arghya
    Denniston, Christopher E.
    Deschenes, Simon-Pierre
    Harlow, Kyle
    Khattak, Shehryar
    Nogueira, Lucas
    Palieri, Matteo
    Petracek, Pavel
    Petrlik, Matej
    Reinke, Andrzej
    Kratky, Vit
    Zhao, Shibo
    Agha-mohammadi, Ali-akbar
    Alexis, Kostas
    Heckman, Christoffer
    Khosoussi, Kasra
    Kottege, Navinda
    Morrell, Benjamin
    Hutter, Marco
    Pauling, Fred
    Pomerleau, Francois
    Saska, Martin
    Scherer, Sebastian
    Siegwart, Roland
    Williams, Jason L.
    Carlone, Luca
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2024, 40 : 936 - 959