Machine Learning and Deep Learning Techniques for the Survival Prediction of Oropharyngeal Squamous Cell Carcinoma: Ahead of the Pack

被引:0
|
作者
Raj, Keerthi [1 ]
Thomas, Christy [1 ]
Undela, Krishna [1 ]
Kakati, Kaberi [2 ]
机构
[1] Natl Inst Pharmaceut Educ & Res NIPER Guwahati, Gauhati, India
[2] Dr Bhubaneswar Borooah Canc Inst BBCI, Gauhati, India
关键词
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
798
引用
收藏
页码:347 / 347
页数:1
相关论文
共 50 条
  • [31] Prediction of the local treatment outcome in patients with oropharyngeal squamous cell carcinoma using deep learning analysis of pretreatment FDG-PET images
    Noriyuki Fujima
    V. Carlota Andreu-Arasa
    Sara K. Meibom
    Gustavo A. Mercier
    Minh Tam Truong
    Kenji Hirata
    Koichi Yasuda
    Satoshi Kano
    Akihiro Homma
    Kohsuke Kudo
    Osamu Sakai
    BMC Cancer, 21
  • [32] Prediction of the local treatment outcome in patients with oropharyngeal squamous cell carcinoma using deep learning analysis of pretreatment FDG-PET images
    Fujima, Noriyuki
    Andreu-Arasa, V. Carlota
    Meibom, Sara K.
    Mercier, Gustavo A.
    Truong, Minh Tam
    Hirata, Kenji
    Yasuda, Koichi
    Kano, Satoshi
    Homma, Akihiro
    Kudo, Kohsuke
    Sakai, Osamu
    BMC CANCER, 2021, 21 (01)
  • [33] Predicting HPV Status of Oropharyngeal Squamous Cell Carcinoma Patients Using Handcrafted Histomorphometric and Deep Learning Features
    Koyuncu, Can
    Lu, Cheng
    Gondim, Dibson
    Bera, Kaustav
    Thompson, Lester
    Lewis, James
    Madabhushi, Anant
    LABORATORY INVESTIGATION, 2020, 100 (SUPPL 1) : 1207 - 1207
  • [34] Predicting HPV Status of Oropharyngeal Squamous Cell Carcinoma Patients Using Handcrafted Histomorphometric and Deep Learning Features
    Koyuncu, Can
    Lu, Cheng
    Gondim, Dibson
    Bera, Kaustav
    Thompson, Lester
    Lewis, James
    Madabhushi, Anant
    MODERN PATHOLOGY, 2020, 33 (SUPPL 2) : 1207 - 1207
  • [35] Predicting Overall Survival Using Machine Learning Algorithms in Oral Cavity Squamous Cell Carcinoma
    Tan, Jia Yan
    Adeoye, John
    Thomson, Peter
    Sharma, Dileep
    Ramamurthy, Poornima
    Choi, Siu-Wai
    ANTICANCER RESEARCH, 2022, 42 (12) : 5859 - 5866
  • [36] Software Defect Prediction Based on Machine Learning and Deep Learning Techniques: An Empirical Approach
    Albattah, Waleed
    Alzahrani, Musaad
    AI, 2024, 5 (04) : 1743 - 1758
  • [37] A Comprehensive Review on Crop Disease Prediction Based on Machine Learning and Deep Learning Techniques
    Patil, Manoj A.
    Manohar, M.
    THIRD CONGRESS ON INTELLIGENT SYSTEMS, CIS 2022, VOL 1, 2023, 608 : 481 - 503
  • [38] Machine Learning and Deep Learning for Throughput Prediction
    Lee, Dongwon
    Lee, Joohyun
    12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS AND FUTURE NETWORKS (ICUFN 2021), 2021, : 452 - 454
  • [39] Urban transport emission prediction analysis through machine learning and deep learning techniques
    Ji, Tianbo
    Li, Kechen
    Sun, Quanwei
    Duan, Zexia
    TRANSPORTATION RESEARCH PART D-TRANSPORT AND ENVIRONMENT, 2024, 135
  • [40] Comparison of machine learning and deep learning techniques in promoter prediction across diverse species
    Bhandari, Nikita
    Khare, Satyajeet
    Walambe, Rahee
    Kotecha, Ketan
    PEERJ COMPUTER SCIENCE, 2021,