Utilizing echocardiography and unsupervised machine learning for heart failure risk identification

被引:0
|
作者
Simonsen, Jakob oystein [1 ]
Modin, Daniel [1 ]
Skaarup, Kristoffer [1 ]
Djernaes, Kasper [1 ]
Lassen, Mats Christian Hojbjerg [1 ]
Johansen, Niklas Dyrby [1 ]
Marott, Jacob Louis [2 ]
Jensen, Magnus Thorsten [2 ,3 ]
Jensen, Gorm B. [2 ]
Schnohr, Peter [2 ]
Martinez, Sergio Sanchez [4 ]
Claggett, Brian Lee [5 ]
Mogelvang, Rasmus [2 ,6 ]
Biering-Sorensen, Tor [1 ,2 ,6 ,7 ,8 ]
机构
[1] Herlev & Gentofte Univ Hosp, Dept Cardiol, Copenhagen, Denmark
[2] Bispebjerg & Frederiksberg Univ Hosp, Copenhagen City Heart Study, Copenhagen, Denmark
[3] Amager & Hvidovre Univ Hosp, Dept Cardiol, Copenhagen, Denmark
[4] August Pi i Sunyer Biomed Res Inst IDIBAPS, Barcelona, Spain
[5] Harvard Med Sch, Boston, MA USA
[6] Rigshosp, Dept Cardiol, Copenhagen, Denmark
[7] Univ Copenhagen, Fac Hlth & Med Sci, Inst Biomed Sci, Copenhagen, Denmark
[8] Steno Diabet Ctr, Copenhagen, Denmark
关键词
Unsupervised machine learning; Cluster analysis; Artificial intelligence; Echocardiography; Longitudinal strain; Heart failure; EUROPEAN ASSOCIATION; AMERICAN SOCIETY; RECOMMENDATIONS; UPDATE; STRAIN;
D O I
10.1016/j.ijcard.2024.132636
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Global longitudinal strain (GLS) is recognized as a powerful predictor of heart failure (HF). However, the entire strain curve may entail important prognostic information regarding HF risk that might be undiscovered by only focusing on the peak strain value. Objective: The hypothesis of the present study was, that analysis of the entire strain curve using unsupervised machine learning (uML) would reveal novel ventricular deformation patterns capable of predicting incident HF independently of GLS. Methods: Longitudinal strain curves from 3710 subjects from the general population without prevalent HF were analyzed using uML. Results: Mean age was 56 years and 43 % were male. During a median follow-up of 5.3 years, 92 subjects (2.5 %) developed HF. The uML algorithm generated a hierarchical clustering tree (HCT) resulting in 10 different clusters. Generally, the strain curves displayed reduced early diastolic strain to peak-strain ratio with an increasing incidence rate of HF. In multivariable Cox regressions, cluster 9 was significantly associated with increased risk of HF when compared to cluster 2-5, and 7-8 [For cluster 3: HR 8.95, 95 %CI: 2.08;38.48, P = 0.003] even though the subjects of cluster 9 were younger, displayed healthier clinical baseline characteristics, and only had slightly reduced GLS. The mean strain curve of cluster 9 displayed an early systolic lengthening followed by a late and reduced contraction specifically related to the basal lateral segment. Conclusion: The unsupervised machine learning algorithm identified unknown strain patterns beyond GLS presumably related to increased risk of HF.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Learning Intelligent for Effective Sonography (LIFES) Model for Rapid Diagnosis of Heart Failure in Echocardiography
    Liastuti, Lies Dina
    Siswanto, Bambang Budi
    Sukmawan, Renan
    Jatmiko, Wisnu
    Alwi, Idrus
    Wiweko, Budi
    Kekalih, Aria
    Nursakina, Yosilia
    Putri, Rindayu Yusticia Indira
    Jati, Grafika
    Ramadhan, Mgs M. Luthfi
    Govardi, Ericko
    Nur, Aqsha Azhary
    ACTA MEDICA INDONESIANA, 2022, 54 (03) : 428 - 437
  • [42] Point-of-care echocardiography of the right heart improves acute heart failure risk stratification for low-risk patients: The REED-AHF prospective study
    Harrison, Nicholas E.
    Favot, Mark J.
    Gowland, Laura
    Lenning, Jacob
    Henry, Sarah
    Gupta, Sushane
    Abidov, Aiden
    Levy, Phillip
    Ehrman, Robert
    ACADEMIC EMERGENCY MEDICINE, 2022, 29 (11) : 1306 - 1319
  • [43] Unsupervised Machine Learning to Identify Risk Factors of Pyeloplasty Failure in Ureteropelvic Junction Obstruction
    Song, Jonathan J.
    Kielhofner, Jane
    Qian, Zhiyu
    Gu, Catherine
    Boysen, William
    Chang, Steven
    Dahl, Douglas
    Eswara, Jairam
    Haleblian, George
    Wintner, Anton
    Wollin, Daniel A.
    JOURNAL OF ENDOUROLOGY, 2024, 38 (11) : 1164 - 1171
  • [44] Echocardiography and Risk Prediction in Advanced Heart Failure: Incremental Value Over Clinical Markers
    Agha, Syed A.
    Kalogeropoulos, Andreas P.
    Shih, Jeffrey
    Georgiopoulou, Vasiliki V.
    Giamouzis, Grigorios
    Anarado, Perry
    Mangalat, Deepa
    Hussain, Imad
    Book, Wendy
    Laskar, Sonjoy
    Smith, Andrew L.
    Martin, Randolph
    Butler, Javed
    JOURNAL OF CARDIAC FAILURE, 2009, 15 (07) : 586 - 592
  • [45] Deep Echocardiography: A First Step toward Automatic Cardiac Disease Diagnosis Using Machine Learning
    Ye, Zi
    Kumar, Yogan Jaya
    Sing, Goh Ong
    Zhang, Jianming
    Ni, Xianda
    JOURNAL OF INTERNET TECHNOLOGY, 2020, 21 (06): : 1589 - 1600
  • [46] Echocardiographic estimation of left ventricular and pulmonary pressures in patients with heart failure and preserved ejection fraction: a study utilizing simultaneous echocardiography and invasive measurements
    Hummel, Yoran M.
    Liu, Licette C. Y.
    Lam, Carolyn S. P.
    Fonseca-Munoz, Daniel F.
    Damman, Kevin
    Rienstra, Michiel
    van der Meer, Peter
    Rosenkranz, Stephan
    van Veldhuisen, Dirk J.
    Voors, Adriaan A.
    Hoendermis, Elke S.
    EUROPEAN JOURNAL OF HEART FAILURE, 2017, 19 (12) : 1651 - 1660
  • [47] Atrial Fibrillation as a Risk Marker in Patients with Decompensated Heart Failure
    Nabati, Maryam
    Bakhshinasab, Soheil
    Farsavian, Ali Asghar
    Rasolpor, Fatemch
    Yazdani-Charati, Jamshid
    INTERNATIONAL CARDIOVASCULAR RESEARCH JOURNAL, 2020, 14 (02) : 42 - 47
  • [48] Congenital factor XI deficiency and risk of heart failure in humans
    Lova, Alejandro
    Pagan, Javier
    de la Morena, Gonzalo
    Vazquez, David Jose
    Cerezo-Manchado, Juan Jose
    Bravo-Perez, Carlos
    Minano, Antonia
    Tomas, Ana
    Vicente, Vicente
    Lozano, Marfa Luisa
    Corral, Javier
    de la Morena-Barrio, Marfa Eugenia
    JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2023, 21 (09) : 2626 - 2629
  • [49] Prevalence of early stages of heart failure in an elderly risk population: the Copenhagen Heart Failure Risk Study
    Gaborit, Freja Stoltze
    Kistorp, Caroline
    Kumler, Thomas
    Hassager, Christian
    Tonder, Niels
    Kober, Lars
    Hansen, Pernille Mork
    Kamstrup, Pia Rorbaek
    Faber, Jens
    Iversen, Kasper Karmark
    Schou, Morten
    OPEN HEART, 2019, 6 (01):
  • [50] Layer-specific global longitudinal strain and the risk of heart failure and cardiovascular mortality in the general population: the Copenhagen City Heart Study
    Skaarup, Kristoffer Grundtvig
    Lassen, Mats C. H.
    Johansen, Niklas D.
    Sengelov, Morten
    Marott, Jacob L.
    Jorgensen, Peter G.
    Jensen, Gorm
    Schnohr, Peter
    Prescott, Eva
    Sogaard, Peter
    Gislason, Gunnar
    Mogelvang, Rasmus
    Biering-Sorensen, Tor
    EUROPEAN JOURNAL OF HEART FAILURE, 2021, 23 (11) : 1819 - 1827