Calculation of Single and Multiple Low Reynolds Number Free Jets with a Lattice-Boltzmann Method

被引:2
作者
Hettel, Matthias [1 ]
Bukreev, Fedor [2 ]
Daymo, Eric [3 ]
Kummerlaender, Adrian [4 ]
Krause, Mathias J. [5 ]
Deutschmann, Olaf [1 ]
机构
[1] Karlsruhe Inst Technol KIT, Dept Tech Chem & Polymer Chem, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Inst Mech Proc Engn & Mech, Lattice Boltzmann Res Grp, D-76131 Karlsruhe, Germany
[3] Tonkomo LLC, Gilbert, AZ 85297 USA
[4] Karlsruhe Inst Technol KIT, Inst Appl & Numer Math, Lattice Boltzmann Res Grp, D-76131 Karlsruhe, Germany
[5] Karlsruhe Inst Technol KIT, Inst Appl & Numer Math, Inst Mech Proc Engn & Mech, Lattice Boltzmann Res Grp, D-76131 Karlsruhe, Germany
关键词
Low Reynolds Number; Lattice Boltzmann Equation; Fluid Flow Properties; Transitional Flow; Fluid Mechanics; Finite Difference Method; Transition to Turbulence; Computational Fluid Dynamics; Finite Volume Method; Strouhal Numbers; LARGE-EDDY SIMULATION; PREFERRED MODE; STABILITY; INSTABILITY; MONOLITH;
D O I
10.2514/1.J064280
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Numerical calculations of low-Reynolds-number freejets with a Lattice Boltzmann Method are presented. The calculated-time-averaged axial velocity of a round jet with Re=1030 matches experimental data, including the length of transition from laminar to turbulent flow. Special care was needed for the inlet conditions in order to reproduce the vena contracta phenomenon. The results for round jets with Re=1000/1500/2000 show good agreement with Finite Difference Method calculations from the literature. In principle, there is a strong sensitivity to the inlet conditions, suggesting a need in future experimental work to measure in detail the velocity profiles and turbulence quantities at the nozzle outlet. The application of turbulence at the inflow boundary of the calculation domain is often used to emulate sources of disturbances in experiments. The present study demonstrates the need to investigate the impact of turbulence level and length scale at inlet independent of each other. Finally, the calculation for a bundle of nine jets with a square inlet led to the finding that the velocity decay of the central jet is maximal when the spacing between the jets is ca. one jet diameter.
引用
收藏
页码:1305 / 1318
页数:14
相关论文
共 51 条
[31]   Large eddy simulation of a circular jet: effect of inflow conditions on the near field [J].
Kim, Jungwoo ;
Choi, Haecheon .
JOURNAL OF FLUID MECHANICS, 2009, 620 :383-411
[32]  
Krause M.J., 2010, Fluid flow simulation and optimisation with Lattice Boltzmann methods on high performance computers-application to the human respiratory system, DOI [10.5445/IR/1000019768, DOI 10.5445/IR/1000019768]
[33]   OpenLB-Open source lattice Boltzmann code [J].
Krause, Mathias J. ;
Kummerlaender, Adrian ;
Avis, Samuel J. ;
Kusumaatmaja, Halim ;
Dapelo, Davide ;
Klemens, Fabian ;
Gaedtke, Maximilian ;
Hafen, Nicolas ;
Mink, Albert ;
Trunk, Robin ;
Marquardt, Jan E. ;
Maier, Marie-Luise ;
Haussmann, Marc ;
Simonis, Stephan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 81 (81) :258-288
[34]   Assessment of the vortex method for Large Eddy Simulation inlet conditions [J].
Mathey, F ;
Cokljat, D ;
Bertoglio, JP ;
Sergent, E .
PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2006, 6 (1-3) :58-67
[35]   Centreline mixing characteristics of jets from nine differently shaped nozzles [J].
Mi, J ;
Nathan, GJ ;
Luxton, RE .
EXPERIMENTS IN FLUIDS, 2000, 28 (01) :93-94
[36]   ON SPATIALLY GROWING DISTURBANCES IN AN INVISCID SHEAR LAYER [J].
MICHALKE, A .
JOURNAL OF FLUID MECHANICS, 1965, 23 :521-&
[37]  
Michalke A., 1984, Progress in Aerospace Sciences, V21, P159, DOI [10.1016/0376-0421(84)90005-8, DOI 10.1016/0376-0421(84)90005-8, 10.1016/0376-0421, DOI 10.1016/0376-0421]
[38]   SPATIAL VISCOUS INSTABILITY OF AXISYMMETRIC JETS [J].
MORRIS, PJ .
JOURNAL OF FLUID MECHANICS, 1976, 77 (OCT8) :511-529
[39]   Large-eddy simulation of subsonic turbulent jets using the compressible lattice Boltzmann method [J].
Noah, Khalid ;
Lien, Fue-Sang ;
Yee, Eugene .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2021, 93 (04) :927-952
[40]  
O'Neill P, 2004, EXP FLUIDS, V36, P473, DOI 10.1007/S00348-003-0751-5