Numerical radius inequalities via block matrices

被引:0
|
作者
Audeh, Wasim [1 ]
Al-Labadi, Manal [1 ]
Al-Naimi, Raja'a [1 ]
机构
[1] Univ Petra, Dept Math, Amman, Jordan
来源
ACTA SCIENTIARUM MATHEMATICARUM | 2024年
关键词
Inequality; Numerical radius; Operator; Norm;
D O I
10.1007/s44146-024-00164-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove new numerical radius bounds that generalize some well-known results in the literature. For example, we prove that if A, B, X, Y are bounded linear operators on a complex separable Hilbert space H such that A and B are positive, then w(AX + YB) <= root|| A + B || || X (& lowast;) AX + YBY & lowast; ||. This inequality generalizes a celebrated inequality proved by Kittaneh which states that: w(2)(A) <= 1/2|| A(& lowast;)A+AA(& lowast;) ||.
引用
收藏
页数:11
相关论文
共 50 条