Unique composite architecture of phosphor-in-glass film coated on different heat-conducting substrates for high-brightness laser lighting

被引:0
作者
Liu, Xin [1 ]
Chen, Mingxiang [1 ]
Zhao, Jiuzhou [2 ]
Zhang, Hongjin [2 ]
Peng, Yang [2 ]
Wang, Qing [3 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mech Sci & Engn, State Key Lab Intelligent Mfg Equipment & Technol, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Sch Aerosp Engn, Wuhan 430074, Peoples R China
[3] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Peoples R China
来源
JOURNAL OF ADVANCED CERAMICS | 2025年 / 14卷 / 02期
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
luminescent materials; phosphor-in-glass film (PiGF); heat-conducting substrate (HCS); laser lighting; optical-thermal performances; HIGH SATURATION THRESHOLD; SINGLE-CRYSTAL; LUMINESCENCE SATURATION; COLOR CONVERTER; CERAMICS;
D O I
10.26599/JAC.2024.9221027
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In the development of static luminescent materials with remarkable optical-thermal performance and low cost, next- generation high-brightness laser lighting faces a key challenge. Herein, a unique composite architecture of Y3Al5012:Ce3+ (YAG) phosphor-in-glass film coated on different heat-conducting substrates (PiGF@HCSs), i.e., PiGF@sapphire, PiGF@Al203, PiGF@AlN, and PiGF@BN-AlN composites, was designed and prepared by a simple film printing and low-temperature sintering technology. The heat-conducting substrates significantly affect the luminescence saturation and phosphor conversion of PiGF@HCSs, allowing substrates with higher thermal conductivity (TC) to have a higher laser power density (LPD) and higher reflectivity to enable higher luminous efficacy (LE). As a consequence, PiGF@sapphire realizes a luminous flux (LF) of 2076 lm@12 W/mm2, which is higher than those of PiGF@Al203 (1890 lm@15 W/mm2) and PiGF@AlN (1915 lm@24 W/mm2), whilePiGF@BN-AlN enables a maximum LF of 3058 lm@21 W/mm2. Furthermore, the LE of PiGF@BN-AlN reaches 194 lm/W, which is 1.6 times that of PiGF@AlN, while those of PiGF@sapphire and PiGF@Al203 are 192 and 150 lm/W, respectively. The working temperature of PiGF@AlN is only 93.3 degrees C under LPD of 9 W/mm2, while those of PiGF@sapphire, PiGF@Al203, and PiGF@BN-AlN increase to 193.8, 133.6, and 117 degrees C, respectively. These findings provide guidance for commercial applications of PiGF@HCS converters in high-brightness laser lighting and displays.
引用
收藏
页数:8
相关论文
empty
未找到相关数据