Robust EKF Based on Shape Parameter Mixture Distribution for Wireless Localization With Time-Varying Skewness Measurement Noise

被引:3
作者
Wang, Guoqing [1 ]
Zhang, Zihao [1 ]
Yang, Chunyu [1 ]
Ma, Lei [1 ]
Dai, Wei [1 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
Noise; Noise measurement; Shape; Pollution measurement; Accuracy; Location awareness; Estimation; GSM; Kalman filters; Vectors; Kalman filter (KF); time-varying skewness; variational Bayesian; wireless localization (WL); KALMAN FILTER;
D O I
10.1109/TIM.2024.3502733
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this article, we explore the state estimation challenge in wireless localization (WL) when faced with the time-varying skewness measurement noise arising from the variable nonline-of-sight (NLOS) and imperfect synchronization. To model this kind of noise, we employ a shape parameter mixture (SPM) distribution, which is obtained by mixing the shape parameters of a Gaussian scale mixture (GSM) distribution and is structured in a hierarchical Gaussian form. We then develop an extended Kalman filter (KF) based on the SPM distribution, which can adjust the skewness parameters adaptively by employing the variational Bayesian approach to approximate the exact joint posterior probability density functions of the system state and measurement noise parameters. Several existing works are special cases of our generalized estimation algorithms by choosing different hyperparameters. Extensive simulations and experiments demonstrate that the proposed algorithm surpasses the existing counterparts in the presence of the time-varying skewness noise.
引用
收藏
页数:10
相关论文
共 31 条
[1]   UWB Localization in a Smart Factory: Augmentation Methods and Experimental Assessment [J].
Barbieri, Luca ;
Brambilla, Mattia ;
Trabattoni, Andrea ;
Mervic, Stefano ;
Nicoli, Monica .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
[2]  
Bishop C., 2006, SPRINGE GOOGLE SCH
[3]   Unified Form for the Robust Gaussian Information Filtering Based on M-Estimate [J].
Chang, Lubin ;
Li, Kailong .
IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (04) :412-416
[4]   Robust derivative-free Kalman filter based on Huber's M-estimation methodology [J].
Chang, Lubin ;
Hu, Baiqing ;
Chang, Guobin ;
Li, An .
JOURNAL OF PROCESS CONTROL, 2013, 23 (10) :1555-1561
[5]   Maximum correntropy Kalman filter [J].
Chen, Badong ;
Liu, Xi ;
Zhao, Haiquan ;
Principe, Jose C. .
AUTOMATICA, 2017, 76 :70-77
[6]   A Background-Impulse Kalman Filter With Non-Gaussian Measurement Noises [J].
Fan, Xuxiang ;
Wang, Gang ;
Han, Jiachen ;
Wang, Yinghui .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (04) :2434-2443
[7]   A Gaussian Mixture Unscented Rauch-Tung-Striebel Smoothing Framework for Trajectory Reconstruction [J].
He, Jiacheng ;
Peng, Bei ;
Feng, Zhenyu ;
Zhong, Shan ;
He, Bo ;
Wang, Gang .
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (05) :7481-7491
[8]   A Novel Outlier-Robust Kalman Filtering Framework Based on Statistical Similarity Measure [J].
Huang, Yulong ;
Zhang, Yonggang ;
Zhao, Yuxin ;
Shi, Peng ;
Chambers, Jonathon A. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2021, 66 (06) :2677-2692
[9]   A New Robust Kalman Filter With Adaptive Estimate of Time-Varying Measurement Bias [J].
Huang, Yulong ;
Jia, Guangle ;
Chen, Badong ;
Zhang, Yonggang .
IEEE SIGNAL PROCESSING LETTERS, 2020, 27 :700-704
[10]   Robust Kalman Filters Based on Gaussian Scale Mixture Distributions With Application to Target Tracking [J].
Huang, Yulong ;
Zhang, Yonggang ;
Shi, Peng ;
Wu, Zhemin ;
Qian, Junhui ;
Chambers, Jonathon A. .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (10) :2082-2096