On the Number of Non-equivalent Parameterized Squares in a String

被引:0
作者
Hamai, Rikuya [1 ]
Taketsugu, Kazushi [1 ]
Nakashima, Yuto [2 ]
Inenaga, Shunsuke [2 ]
Bannai, Hideo [3 ]
机构
[1] Kyushu Univ, Dept Informat Sci & Technol, Fukuoka, Japan
[2] Kyushu Univ, Dept Informat, Fukuoka, Japan
[3] Tokyo Med & Dent Univ, M&D Data Sci Ctr, Tokyo, Japan
来源
STRING PROCESSING AND INFORMATION RETRIEVAL, SPIRE 2024 | 2025年 / 14899卷
关键词
Parameterized equivalence of strings; Squares; Periodicity; PERIODICITY;
D O I
10.1007/978-3-031-72200-4_13
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A string s is called a parameterized square when s = xy for strings x, y and x and y are parameterized equivalent. Kociumaka et al. showed the number of parameterized squares, which are non-equivalent in parameterized equivalence, in a string of length n that contains sigma distinct characters is at most 2 sigma!n [TCS 2016]. In this paper, we show that the maximum number of non-equivalent parameterized squares is less than sigma n, which significantly improves the best-known upper bound by Kociumaka et al.
引用
收藏
页码:174 / 183
页数:10
相关论文
共 20 条
[1]   ALPHABET DEPENDENCE IN PARAMETERIZED MATCHING [J].
AMIR, A ;
FARACH, M ;
MUTHUKRISHNAN, S .
INFORMATION PROCESSING LETTERS, 1994, 49 (03) :111-115
[2]   Periodicity and repetitions in parameterized strings [J].
Apostolico, Alberto ;
Giancarlo, Raffaele .
DISCRETE APPLIED MATHEMATICS, 2008, 156 (09) :1389-1398
[3]   Parameterized pattern matching: Algorithms and applications [J].
Baker, BS .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1996, 52 (01) :28-42
[4]  
Brlek S, 2022, Arxiv, DOI arXiv:2204.10204
[5]  
Deguchi S, 2008, PROCEEDINGS OF THE PRAGUE STRINGOLOGY CONFERENCE 2008, P84
[6]   UNIQUENESS THEOREMS FOR PERIODIC FUNCTIONS [J].
FINE, NJ ;
WILF, HS .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (01) :109-&
[7]   How many squares can a string contain? [J].
Fraenkel, AS ;
Simpson, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1998, 82 (01) :112-120
[8]  
Fujisato N, 2019, LECT NOTES COMPUT SC, V11811, P382, DOI 10.1007/978-3-030-32686-9_27
[9]  
Ganguly A, 2017, PROCEEDINGS OF THE TWENTY-EIGHTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P397
[10]  
Gawrychowski P, 2023, Arxiv, DOI arXiv:2302.00724