Multi-view collaborative learning for graph attribute imputation

被引:0
|
作者
Yu, Yingxing [1 ]
Li, Huige [1 ]
Yang, Xibei [1 ]
Zhang, Yong [1 ]
Song, Jingjing [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Comp, Zhenjiang 212100, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view learning; Graph convolutional networks; Attribute imputation; Graph representation learning;
D O I
10.1007/s13042-024-02480-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many real-world applications, graph data often has missing attributes, is a challenging research task. Recently, attribute imputation methods based on multi-view networks have shown great potential in attribute-missing graphs. However, due to the missing attributes of certain nodes, existing methods for attribute-missing graphs can not effectively capture rich and complementary information between two views, thus limiting multi-view networks from learning high-quality attribute imputation. To address these problems, we propose a novel method named M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{M}$$\end{document}ulti-view cO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{O}$$\end{document}llaborative learning for graph attriB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{B}$$\end{document}ute imputA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}$$\end{document}tion(MOBA). Specifically, MOBA leverages a reliable augmentation strategy based on original graph relations, serving as a basis to aggregate attribute-observed neighboring node information. In the encoding stage, we introduce imbalanced encoders based on distinct propagation steps in different views, which effectively enhance the complementary information. Subsequently, to preserve more accurate node embeddings, MOBA introduces a multi-view collaborative learning strategy which aims to reduce the redundant information and maximize the consistency between two views. Extensive experiments on four benchmark datasets have demonstrated the effectiveness and superiority of our proposed MOBA over the state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Multi-View Graph Learning with Adaptive Label Propagation
    Li, Sheng
    Liu, Hongfu
    Tao, Zhiqiang
    Fu, Yun
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 110 - 115
  • [42] Multi-view graph contrastive learning for social recommendation
    Chen, Rui
    Chen, Jialu
    Gan, Xianghua
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [43] Contrastive and attentive graph learning for multi-view clustering
    Wang, Ru
    Li, Lin
    Tao, Xiaohui
    Wang, Peipei
    Liu, Peiyu
    Information Processing and Management, 2022, 59 (04):
  • [44] Collaborative Multi-View Clustering
    Ghassany, Mohamad
    Grozavu, Nistor
    Bennani, Younes
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [45] Collaborative Multi-View Denoising
    Zhang, Lei
    Wang, Shupeng
    Zhang, Xiaoyu
    Wang, Yong
    Li, Binbin
    Shen, Dinggang
    Ji, Shuiwang
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 2045 - 2054
  • [46] Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning
    Chunman Zuo
    Yijian Zhang
    Chen Cao
    Jinwang Feng
    Mingqi Jiao
    Luonan Chen
    Nature Communications, 13
  • [47] Imputation of missing values in multi-view data
    van Loon, Wouter
    de Vos, Frank
    de Vos, Frank
    Koini, Marisa
    Schmidt, Reinhold
    de Rooij, Mark
    INFORMATION FUSION, 2024, 111
  • [48] Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning
    Zuo, Chunman
    Zhang, Yijian
    Cao, Chen
    Feng, Jinwang
    Jiao, Mingqi
    Chen, Luonan
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [49] Stop filtering: Multi-view attribute-enhanced dialogue learning
    Li, Yiwei
    Sun, Bin
    Feng, Shaoxiong
    Li, Kan
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [50] Collaborative Multi-view Learning with Active Discriminative Prior for Recommendation
    Zhang, Qing
    Wang, Houfeng
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PART I, 2015, 9077 : 355 - 368