Multi-view collaborative learning for graph attribute imputation

被引:0
|
作者
Yu, Yingxing [1 ]
Li, Huige [1 ]
Yang, Xibei [1 ]
Zhang, Yong [1 ]
Song, Jingjing [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Comp, Zhenjiang 212100, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view learning; Graph convolutional networks; Attribute imputation; Graph representation learning;
D O I
10.1007/s13042-024-02480-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In many real-world applications, graph data often has missing attributes, is a challenging research task. Recently, attribute imputation methods based on multi-view networks have shown great potential in attribute-missing graphs. However, due to the missing attributes of certain nodes, existing methods for attribute-missing graphs can not effectively capture rich and complementary information between two views, thus limiting multi-view networks from learning high-quality attribute imputation. To address these problems, we propose a novel method named M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{M}$$\end{document}ulti-view cO\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{O}$$\end{document}llaborative learning for graph attriB\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{B}$$\end{document}ute imputA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}$$\end{document}tion(MOBA). Specifically, MOBA leverages a reliable augmentation strategy based on original graph relations, serving as a basis to aggregate attribute-observed neighboring node information. In the encoding stage, we introduce imbalanced encoders based on distinct propagation steps in different views, which effectively enhance the complementary information. Subsequently, to preserve more accurate node embeddings, MOBA introduces a multi-view collaborative learning strategy which aims to reduce the redundant information and maximize the consistency between two views. Extensive experiments on four benchmark datasets have demonstrated the effectiveness and superiority of our proposed MOBA over the state-of-the-art methods.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Consistent graph learning for multi-view spectral clustering
    Xie, Deyan
    Gao, Quanxue
    Zhao, Yougang
    Yang, Fan
    Song, Wei
    PATTERN RECOGNITION, 2024, 154
  • [32] Multi-view Graph Representation Learning Beyond Homophily
    Lin, Bei
    Li, You
    Gui, Ning
    Xu, Zhuopeng
    Yu, Zhiwu
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (08)
  • [33] Contrastive Consensus Graph Learning for Multi-View Clustering
    Wang, Shiping
    Lin, Xincan
    Fang, Zihan
    Du, Shide
    Xiao, Guobao
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2022, 9 (11) : 2027 - 2030
  • [34] Multi-View Graph Clustering by Adaptive Manifold Learning
    Zhao, Peng
    Wu, Hongjie
    Huang, Shudong
    MATHEMATICS, 2022, 10 (11)
  • [35] Robust Joint Graph Learning for Multi-View Clustering
    He, Yanfang
    Yusof, Umi Kalsom
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 722 - 734
  • [36] Multi-view Spectral Clustering Based on Graph Learning
    Song, Jinmei
    Liu, Baokai
    Zhang, Kaiwu
    Yu, Yao
    Du, Shiqiang
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6527 - 6532
  • [37] Deep Supervised Multi-View Learning With Graph Priors
    Hu, Peng
    Zhen, Liangli
    Peng, Xi
    Zhu, Hongyuan
    Lin, Jie
    Wang, Xu
    Peng, Dezhong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 123 - 133
  • [38] Discriminative metric learning for multi-view graph partitioning
    Li, Juan-Hui
    Wang, Chang-Dong
    Li, Pei-Zhen
    Lai, Jian-Huang
    PATTERN RECOGNITION, 2018, 75 : 199 - 213
  • [39] Consensus Graph Learning for Incomplete Multi-view Clustering
    Zhou, Wei
    Wang, Hao
    Yang, Yan
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2019, PT I, 2019, 11439 : 529 - 540
  • [40] Contrastive Consensus Graph Learning for Multi-View Clustering
    Shiping Wang
    Xincan Lin
    Zihan Fang
    Shide Du
    Guobao Xiao
    IEEE/CAAJournalofAutomaticaSinica, 2022, 9 (11) : 2027 - 2030