Quantum gravitational decoherence of a mechanical oscillator from spacetime fluctuations

被引:2
作者
Donadi, Sandro [1 ,2 ]
Fadel, Matteo [3 ]
机构
[1] Queens Univ, Ctr Quantum Mat & Technol, Sch Math & Phys, Belfast BT7 1NN, Antrim, North Ireland
[2] Ist Nazl Fis Nucleare, Trieste Sect, Via Valerio 2, I-34127 Trieste, Italy
[3] Swiss Fed Inst Technol, Dept Phys, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
GENERALIZED UNCERTAINTY PRINCIPLE; PLANCK-SCALE PHYSICS; MINIMAL LENGTH; GRAVITY; PARAMETER; TESTS;
D O I
10.1103/PhysRevD.111.026009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We consider the scenario of a fluctuating spacetime due to a deformed commutation relation with a fluctuating deformation parameter or to a fluctuating metric tensor. By computing the resulting dynamics and averaging over these fluctuations, we find that a system experiences a decoherence in the momentum basis. We studied the predictions of the model for a free particle and an harmonic oscillator. Using experimental data taken from a mechanical oscillator prepared in quantum states of motion, we put a bound on the free parameters of the considered model. In addition, we comment on how these measurements can also provide bounds to other phenomenological quantum gravity models, such as the length scale for nonlocal dynamics.
引用
收藏
页数:7
相关论文
共 46 条
[11]   Short distance versus long distance physics: The classical limit of the minimal length uncertainty relation [J].
Benczik, S ;
Chang, LN ;
Minic, D ;
Okamura, N ;
Rayyan, S ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 66 (02) :1
[12]   Schrodinger cat states of a 16-microgram mechanical oscillator [J].
Bild, Marius ;
Fadel, Matteo ;
Yang, Yu ;
von Lupke, Uwe ;
Martin, Phillip ;
Bruno, Alessandro ;
Chu, Yiwen .
SCIENCE, 2023, 380 (6642) :274-278
[13]   Towards LHC physics with nonlocal Standard Model [J].
Biswas, Tirthabir ;
Okada, Nobuchika .
NUCLEAR PHYSICS B, 2015, 898 :113-131
[14]   Effective Field Theory Approach to Gravitationally Induced Decoherence [J].
Blencowe, M. P. .
PHYSICAL REVIEW LETTERS, 2013, 111 (02)
[15]   Planck scale corrections to the harmonic oscillator, coherent, and squeezed states [J].
Bosso, Pasquale ;
Das, Saurya ;
Mann, Robert B. .
PHYSICAL REVIEW D, 2017, 96 (06)
[16]   Metric fluctuations and decoherence [J].
Breuer, Heinz-Peter ;
Goeklue, Ertan ;
Laemmerzahl, Claus .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (10)
[17]   Testing the generalized uncertainty principle with macroscopic mechanical oscillators and pendulums [J].
Bushev, P. A. ;
Bourhill, J. ;
Goryachev, M. ;
Kukharchyk, N. ;
Ivanov, E. ;
Galliou, S. ;
Tobar, M. L. ;
Danilishin, S. .
PHYSICAL REVIEW D, 2019, 100 (06)
[18]   Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations [J].
Chang, LN ;
Minic, D ;
Okamura, N ;
Takeuchi, T .
PHYSICAL REVIEW D, 2002, 65 (12)
[19]   Harmonic oscillator with minimal length uncertainty relations and ladder operators [J].
Dadic, I ;
Jonke, L ;
Meljanac, S .
PHYSICAL REVIEW D, 2003, 67 (08)
[20]   Generalized uncertainty principle corrections to the simple harmonic oscillator in phase space [J].
Das, Saurya ;
Robbins, Matthew P. G. ;
Walton, Mark A. .
CANADIAN JOURNAL OF PHYSICS, 2016, 94 (01) :139-146