Predicting cerebral infarction and transient ischemic attack in healthy individuals and those with dysmetabolism: a machine learning approach combined with routine blood tests

被引:0
作者
Yang, Yunyun [1 ,2 ]
Huang, Lindan [1 ,2 ,3 ]
Gu, Ying [2 ]
Wang, Zhicheng [1 ,4 ]
Liu, Shuai [2 ]
Chen, Qun [2 ]
Ning, Wanshan [2 ]
Hong, Guolin [1 ,3 ]
机构
[1] Xiamen Univ, Affiliated Hosp 1, Sch Med, Xiamen Key Lab Genet Testing,Dept Lab Med, Xiamen 361003, Fujian, Peoples R China
[2] Xiamen Univ, Affiliated Hosp 1, Inst Clin Med Res, Sch Med, Xiamen 361003, Fujian, Peoples R China
[3] Xiamen Univ, Sch Publ Hlth, Xiamen 361003, Fujian, Peoples R China
[4] Xiamen Univ, Sch Med, Dept Otolaryngol, Xiamen 361003, Fujian, Peoples R China
关键词
Machine learning; Predictive model; Blood routine indicators; Blood biochemical indicators; Cerebral infarction; Transient ischemic attack; Dysmetabolism; RISK-FACTORS; STROKE;
D O I
10.1038/s41598-025-94682-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Ischemic cerebral infarction is the most prevalent type of stroke, causing significant disability and death worldwide. Transient ischemic attack (TIA) is a strong predictor of subsequent stroke. Individuals with dysmetabolism, such as hypertension, hypercholesterolemia, and diabetes, are at increased risk for cerebral infarction (CI) and TIA. In resource-limited settings, diagnosing CI and TIA can be particularly difficult due to a lack of advanced imaging and specialized expertise. Therefore, we aim to develop a simple, convenient, blood-based approach that could assist clinicians in diagnosing CI and TIA, especially in regions where advanced imaging or stroke-specific expertise is limited. All study subjects were patients admitted to the First Hospital of Xiamen University and healthy check-up populations between January 2018 and September 2023. This study employed five machine learning methods alongside 21 blood routine indicators, 30 blood biochemical indicators, age, and gender to construct predictive models for CI and TIA in both healthy individuals and those with dysmetabolism. The Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) served as the metric to assess the comprehensive predictive capability of the models. Subsequently, the SHAP package was employed for model interpretation. Extreme Gradient Boosting (XGBoost) outperforms other models in all predictive models. In the models predicting CI and TIA among healthy, the AUC is 0.9958 (0.9947-0.9969) and 0.9928 (0.9899-0.9951), respectively. Among the nine shared key features of the two models are indicators of glucose metabolism, lipid metabolism, and liver metabolism. In the models for predicting CI and TIA among patients with hypertension, hypercholesterolemia, diabetes, and those with all three metabolic disorders combined, the AUCs ranged from 0.6990 to 0.8591. We found that the indicators K significantly contributed to predict CI and TIA from those with dysmetabolism. Additionally, metabolic-related indicators, such as glucose (GLU) and high-density lipoprotein cholesterol (HDL-C), are ranked highly among the top ten contributing features. XGBoost performed the best in all models. It can effectively differentiate CI and TIA from healthy and dysmetabolic patients by combining blood routine and blood biochemical indicators. Moreover, it can also differentiate CI from TIA. Although any suspicious findings from this model would still require confirmatory imaging, the simplicity and low cost of blood-based testing may offer a practical adjunct for clinicians-particularly in areas lacking advanced imaging or extensive stroke expertise-and could facilitate earlier diagnostic decision-making.
引用
收藏
页数:13
相关论文
共 48 条
[1]   One-Year Risk of Stroke after Transient Ischemic Attack or Minor Stroke [J].
Amarenco, Pierre ;
Lavallee, Philippa C. ;
Labreuche, Julien ;
Albers, Gregory W. ;
Bornstein, Natan M. ;
Canhao, Patricia ;
Caplan, Louis R. ;
Donnan, Geoffrey A. ;
Ferro, Jose M. ;
Hennerici, Michael G. ;
Molina, Carlos ;
Rothwell, Peter M. ;
Sissani, Leila ;
Skoloudik, David ;
Steg, Philippe Gabriel ;
Touboul, Pierre-Jean ;
Uchiyama, Shinichiro ;
Vicaut, Eric ;
Wong, Lawrence K. S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 374 (16) :1533-1542
[2]   Predictors of deteriorating cerebral infarct: Role of inflammatory mechanisms. Would its early treatment be useful? [J].
Castillo, J ;
Leira, R .
CEREBROVASCULAR DISEASES, 2001, 11 :40-48
[3]   Diabetes and Stroke: Epidemiology, Pathophysiology, Pharmaceuticals and Outcomes [J].
Chen, Rong ;
Ovbiagele, Bruce ;
Feng, Wuwei .
AMERICAN JOURNAL OF THE MEDICAL SCIENCES, 2016, 351 (04) :380-386
[4]   Lipid-based insulin-resistance markers predict cardiovascular events in metabolic dysfunction associated steatotic liver disease [J].
Colantoni, Alessandra ;
Bucci, Tommaso ;
Cocomello, Nicholas ;
Angelico, Francesco ;
Ettorre, Evaristo ;
Pastori, Daniele ;
Lip, Gregory Y. H. ;
Del Ben, Maria ;
Baratta, Francesco .
CARDIOVASCULAR DIABETOLOGY, 2024, 23 (01)
[5]   Ischemia Modified Albumin and miR-126 Play Important Role in Diagnosis of Posterior Circulation Transient Ischemic Attack and Prediction of Secondary Cerebral Infarction [J].
Ding Lidong ;
Xiao Zhanghong ;
Mao Huawu ;
Hang Xiaofang ;
Guo Junhua ;
Ke Kaifu ;
Chen Jue .
NEUROLOGY INDIA, 2021, 69 (01) :75-80
[6]   Diagnostic Accuracy of the Explicit Diagnostic Criteria for Transient Ischemic Attack: A Validation Study [J].
Dolmans, L. Servaas ;
Lebedeva, Elena R. ;
Veluponnar, Dinusha ;
van Dijk, Ewoud J. ;
Nederkoorn, Paul J. ;
Hoes, Arno W. ;
Rutten, Frans H. ;
Olesen, Jes ;
Kappelle, L. Jaap ;
Badelink, M. E. L. ;
Rutten, F. H. ;
Hoes, A. W. ;
Kappelle, L. J. ;
van Dijk, E. J. ;
Nederkoorn, P. J. ;
van Delft, S. ;
Seppenwoolde, G. J. .
STROKE, 2019, 50 (08) :2080-2085
[7]   Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019 [J].
Feigin, Valery L. ;
Stark, Benjamin A. ;
Johnson, Catherine Owens ;
Roth, Gregory A. ;
Bisignano, Catherine ;
Abady, Gdiom Gebreheat ;
Abbasifard, Mitra ;
Abbasi-Kangevari, Mohsen ;
Abd-Allah, Foad ;
Abedi, Vida ;
Abualhasan, Ahmed ;
Abu-Rmeileh, Niveen Me ;
Abushouk, Abdelrahman, I ;
Adebayo, Oladimeji M. ;
Agarwal, Gina ;
Agasthi, Pradyumna ;
Ahinkorah, Bright Opoku ;
Ahmad, Sohail ;
Ahmadi, Sepideh ;
Salih, Yusra Ahmed ;
Aji, Budi ;
Akbarpour, Samaneh ;
Akinyemi, Rufus Olusola ;
Al Hamad, Hanadi ;
Alahdab, Fares ;
Alif, Sheikh Mohammad ;
Alipour, Vahid ;
Aljunid, Syed Mohamed ;
Almustanyir, Sami ;
Al-Raddadi, Rajaa M. ;
Salman, Rustam Al-Shahi ;
Alvis-Guzman, Nelson ;
Ancuceanu, Robert ;
Anderlini, Deanna ;
Anderson, Jason A. ;
Ansar, Adnan ;
Antonazzo, Ippazio Cosimo ;
Arabloo, Jalal ;
Arnlov, Johan ;
Artanti, Kurnia Dwi ;
Aryan, Zahra ;
Asgari, Samaneh ;
Ashraf, Tahira ;
Athar, Mohammad ;
Atreya, Alok ;
Ausloos, Marcel ;
Baig, Atif Amin ;
Baltatu, Ovidiu Constantin ;
Banach, Maciej ;
Barboza, Miguel A. .
LANCET NEUROLOGY, 2021, 20 (10) :795-820
[8]   Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel [J].
Ference, Brian A. ;
Ginsberg, Henry N. ;
Graham, Ian ;
Ray, Kausik K. ;
Packard, Chris J. ;
Bruckert, Eric ;
Hegele, Robert A. ;
Krauss, Ronald M. ;
Raal, Frederick J. ;
Schunkert, Heribert ;
Watts, Gerald F. ;
Boren, Jan ;
Fazio, Sergio ;
Horton, Jay D. ;
Masana, Luis ;
Nicholls, Stephen J. ;
Nordestgaard, Borge G. ;
van de Sluis, Bart ;
Taskinen, Marja-Riitta ;
Tokgozoglu, Lale ;
Landmesser, Ulf ;
Laufs, Ulrich ;
Wiklund, Olov ;
Stock, Jane K. ;
Chapman, M. John ;
Catapano, Alberico L. .
EUROPEAN HEART JOURNAL, 2017, 38 (32) :2459-2472
[9]   Brain Imaging in Patients with Transient Ischemic Attack: A Comparison of Computed Tomography and Magnetic Resonance Imaging [J].
Foerster, A. ;
Gass, A. ;
Kern, R. ;
Ay, H. ;
Chatzikonstantinou, A. ;
Hennerici, M. G. ;
Szabo, K. .
EUROPEAN NEUROLOGY, 2012, 67 (03) :136-141
[10]   Head CT deep learning model is highly accurate for early infarct estimation [J].
Gauriau, Romane ;
Bizzo, Bernardo C. ;
Comeau, Donnella S. ;
Hillis, James M. ;
Bridge, Christopher P. ;
Chin, John K. ;
Pawar, Jayashri ;
Pourvaziri, Ali ;
Sesic, Ivana ;
Sharaf, Elshaimaa ;
Cao, Jinjin ;
Noro, Flavia T. C. ;
Wiggins, Walter F. ;
Caton, M. Travis ;
Kitamura, Felipe ;
Dreyer, Keith J. ;
Kalafut, John F. ;
Andriole, Katherine P. ;
Pomerantz, Stuart R. ;
Gonzalez, Ramon G. ;
Lev, Michael H. .
SCIENTIFIC REPORTS, 2023, 13 (01)