JOSD2 inhibits angiotensin II-induced vascular remodeling by deubiquitinating and stabilizing SMAD7

被引:0
|
作者
Shen, Si-rui [1 ,2 ]
Huang, Zhu-qi [1 ,2 ,3 ,4 ]
Yang, Yu-die [1 ,2 ]
Han, Ji-bo [2 ,5 ]
Fang, Zi-min [1 ,2 ]
Guan, Yue [1 ,2 ]
Xu, Jia-chen [1 ,2 ]
Min, Ju-lian [6 ]
Wang, Yi [2 ]
Wu, Gao-jun [1 ]
Xiao, Zhong-xiang [7 ]
Luo, Wu [1 ,2 ]
Huang, Zhou-qing [1 ]
Liang, Guang [1 ,2 ,6 ]
机构
[1] Wenzhou Med Univ, Affiliated Hosp 1, Dept Cardiol, Wenzhou 325035, Peoples R China
[2] Wenzhou Med Univ, Chem Biol Res Ctr, Sch Pharmaceut Sci, Wenzhou 325035, Peoples R China
[3] Zhejiang Prov Peoples Hosp, Hangzhou Med Coll, Affiliated Peoples Hosp, Dept Pharm, Hangzhou 310014, Peoples R China
[4] Zhejiang Prov Peoples Hosp, Affiliated Peoples Hosp, Inst Inflammat, Hangzhou Med Coll, Hangzhou 310014, Peoples R China
[5] Jiaxing Univ, Affiliated Hosp 2, Dept Cardiol, Jiaxing 314000, Peoples R China
[6] Hangzhou Med Coll, Sch Pharmaceut Sci, Hangzhou 311399, Peoples R China
[7] Wenzhou Med Univ, Affiliated Yueqing Hosp, Yueqing 325600, Peoples R China
来源
ACTA PHARMACOLOGICA SINICA | 2025年
基金
中国国家自然科学基金;
关键词
JOSD2; vascular remodeling; SMAD7; angiotensin II; ubiquitination; SMOOTH-MUSCLE-CELLS; UBIQUITIN; DEGRADATION; ENZYMES;
D O I
10.1038/s41401-024-01437-y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Increased level of angiotensin II (Ang II) plays a central role in the development of hypertensive vascular remodeling. In this study, we identified the deubiquitinating enzyme Josephin domain-containing protein 2 (JOSD2) as a protective factor and investigated its molecular mechanism in Ang II-induced vascular remodeling. First, we found that JOSD2 was upregulated in aortic smooth muscle cells, but not in endothelial cells of Ang II-challenged mouse vascular tissues. Whole-body knockout of JOSD2 significantly deteriorated Ang II-induced vascular remodeling in mice. Conversely, Ang II-induced vascular remodeling was reversed by vascular smooth muscle cell (VSMC)-specific JOSD2 overexpression. In vitro, JOSD2 deficiency aggravated Ang II-induced fibrosis, proliferation, and migration VSMCs, while these changes were reversed by JOSD2 overexpression. RNA-seq analysis showed that the protective effects of JOSD2 in VSMCs were related to the TGF beta-SMAD pathway. Furthermore, the LC-MS/MS analysis identified SMAD7, a negative regulator in the TGF beta-SMAD pathway, as the substrate of JOSD2. JOSD2 specifically bound to the MH1 domain of SMAD7 to remove the K48-linked ubiquitin chains from SMAD7 at lysine 220 to sustain SMAD7 stability. Taken together, our finding reveals that the JOSD2-SMAD7 axis is critical for relieving Ang II-induced vascular remodeling and JOSD2 may be a novel and potential therapeutic target for hypertensive vascular remodeling.
引用
收藏
页码:1275 / 1288
页数:14
相关论文
共 50 条
  • [1] Mouse endothelial OTUD1 promotes angiotensin II-induced vascular remodeling by deubiquitinating SMAD3
    Huang, Zhuqi
    Shen, Sirui
    Wang, Mengyang
    Li, Weixin
    Wu, Gaojun
    Huang, Weijian
    Luo, Wu
    Liang, Guang
    EMBO REPORTS, 2023, 24 (03)
  • [2] Deficiency of Smad7 Enhances Myocardial Remodeling Induced by Angiotensin II
    Wei, Li Hua
    Huang, Xiao Ru
    Zhang, Yang
    Heuchel, Rainer
    Yu, Cheuk-Man
    Lan, Hui Yao
    CIRCULATION, 2012, 126 (21)
  • [3] Vascular smooth muscle cell-specific miRNA-214 knockout inhibits angiotensin II-induced hypertension through upregulation of Smad7
    Li, Youyou
    Li, Hongxing
    Xing, Wenjuan
    Li, Jianwei
    Du, Ruikai
    Cao, Dengchao
    Wang, Yinbo
    Yang, Xueyi
    Zhong, Guohui
    Zhao, Yinlong
    Sun, Weijia
    Liu, Caizhi
    Gao, Xingcheng
    Li, Yeheng
    Liu, Zizhong
    Jin, Xiaoyan
    Zhao, Dingsheng
    Tan, Yingjun
    Wang, Yanqing
    Liu, Shujuan
    Yuan, Min
    Song, Jinping
    Chang, Yan-Zhong
    Gao, Feng
    Ling, Shukuan
    Li, Yingxian
    FASEB JOURNAL, 2021, 35 (11)
  • [4] KLF12 Aggravates Angiotensin II-Induced Cardiac Remodeling in Male Mice by Transcriptionally Inhibiting SMAD7
    Hu, Min
    Huang, Shi-Yu
    Gao, Yi-Peng
    Hu, Yu-Xin
    Wang, Sha-Sha
    Teng, Teng
    Zeng, Xiao-Feng
    Tang, Qi-Zhu
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2025, 14 (03):
  • [5] Nitrosonifedipine ameliorates angiotensin II-induced vascular remodeling via antioxidative effects
    Sakurada, Takumi
    Ishizawa, Keisuke
    Imanishi, Masaki
    Izawa-Ishizawa, Yuki
    Fujii, Shoko
    Tominaga, Erika
    Tsuneishi, Teppei
    Horinouchi, Yuya
    Kihira, Yoshitaka
    Ikeda, Yasumasa
    Tomita, Shuhei
    Aihara, Ken-ichi
    Minakuchi, Kazuo
    Tsuchiya, Koichiro
    Tamaki, Toshiaki
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2013, 386 (01) : 29 - 39
  • [6] Atorvastatin Prevents Angiotensin II-Induced Vascular Remodeling and Oxidative Stress
    Briones, Ana M.
    Rodriguez-Criado, Natalia
    Hernanz, Raquel
    Garcia-Redondo, Ana B.
    Rodrigues-Diez, Raul R.
    Alonso, Maria J.
    Egido, Jesus
    Ruiz-Ortega, Marta
    Salaices, Mercedes
    HYPERTENSION, 2009, 54 (01) : 142 - U215
  • [7] Neohesperidin Protects Angiotensin II-Induced Hypertension and Vascular Remodeling
    Zhang, Jingsi
    Hui, Yuanshu
    Liu, Fengyi
    Yang, Qian
    Lu, Yi
    Chang, Yeting
    Liu, Qinlong
    Ding, Yanchun
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [8] MiR-410-3p facilitates Angiotensin II-induced cardiac hypertrophy by targeting Smad7
    Jia, Guizhi
    Liang, Chunguang
    Li, Wenhui
    Dai, Hongliang
    BIOENGINEERED, 2022, 13 (01) : 119 - 127
  • [9] Class A scavenger receptor deficiency augments angiotensin II-induced vascular remodeling
    Qian, Lingling
    Li, Xiaoyu
    Fang, Ru
    Wang, Zhuoyun
    Xu, Yiming
    Zhang, Hanwen
    Bai, Hui
    Yang, Qing
    Zhu, Xudong
    Ben, Jingjing
    Xu, Yong
    Chen, Qi
    BIOCHEMICAL PHARMACOLOGY, 2014, 90 (03) : 254 - 264
  • [10] Adventitial gene transfer of catalase attenuates angiotensin II-induced vascular remodeling
    Liu, Cun-Fei
    Zhang, Jia
    Shen, Kai
    Gao, Ping-Jin
    Wang, Hai-Ya
    Jin, Xin
    Meng, Chao
    Fang, Ning-Yuan
    MOLECULAR MEDICINE REPORTS, 2015, 11 (04) : 2608 - 2614