Influence of sodium anhydroglucuronate on poly (di(ethylene glycol) methyl ether methacrylate) grafting onto isolated cellulose nanofibrils

被引:1
作者
Mariano, Marcos [1 ,5 ]
Fernandes, Ariane S. [1 ,6 ,7 ]
do Nascimento, Diego M. [1 ]
Duran, Nelson [2 ,3 ]
Bernardes, Juliana Silva [1 ,4 ]
机构
[1] Brazilian Ctr Res Energy & Mat, Brazilian Nanotechnol Natl Lab, BR-13083100 Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Dept Struct & Funct Biol, Lab Urogenital Carcinogenesis & Immunotherapy, Campinas, SP, Brazil
[3] Fed Univ ABC UFABC, Nanomed Res Unit NANOMED, Santo Andre, Brazil
[4] Fed Univ ABC, Ctr Nat & Human Sci, BR-09210580 Santo Andre, SP, Brazil
[5] Southeast Technol Univ SETU, Pharmaceut & Mol Biotechnol Res Ctr PMBRC, Main Campus,Cork Rd, Waterford X91K0EK, Ireland
[6] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z3, Canada
[7] Univ British Columbia, UBC Bioprod Inst, Vancouver, BC V6T 1Z3, Canada
基金
巴西圣保罗研究基金会;
关键词
Cellulose nanofibrils; Anhydroglucuronate units; PDEGMA; TRANSFER RADICAL POLYMERIZATION; SURFACE MODIFICATION; NANOCRYSTALS; COPOLYMERIZATION; STABILITY; OXIDATION; HYDROGELS;
D O I
10.1016/j.ijbiomac.2025.140794
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study investigates the temperature-triggered properties and phase behavior of poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) grafted onto cellulose nanofibrils (CNF) before and after the removal of water-soluble cellulose derivatives. Mass conversion and 1H NMR analyses revealed that removing soluble molecules from the pristine nanofibril suspension decreased the quantity of free PDEGMA chains in the solution. Besides, cryogenic transmission electron microscopy (cryo-TEM) imaging above the lower critical solution temperature (LCST) highlighted the formation of unbound PDEGMA globular aggregates through the association of dehydrated chains and increased CNF thickness due to the grafting. Rheology and phase behavior analyses showed significant changes above LCST, with a higher concentration of free chains favoring the collapse of the CNF network at 35 degrees C. The proposed mechanism suggests that free polymer chains help to bridge neighboring fibrils, producing a robust hydrogel at lower solid content. These findings highlight the role of cellulose residues in grafting reactions and their impact on the structure and flow properties of the materials.
引用
收藏
页数:9
相关论文
共 42 条
[31]   Preparation of Poly(poly(ethylene glycol) methyl ether methacrylate-co- styrene)-b-poly(2-(diethylamino)ethyl methacrylate-co-acrylonitrile) by nitroxide-mediated polymerisation in water [J].
Darabi, Ali ;
Cunningham, Michael F. .
POLYMER, 2017, 115 :255-260
[32]   Photoinduced Iron-Based Water-Induced Phase Separable Catalysis (WPSC) ICAR ATRP of Poly(ethylene glycol) Methyl Ether Methacrylate [J].
Wu, Jian ;
Zhang, Bingjie ;
Zhang, Lifen ;
Cheng, Zhenping ;
Zhu, Xiulin .
MACROMOLECULAR RAPID COMMUNICATIONS, 2017, 38 (12)
[33]   The hydrophilic boronic acid-poly(ethylene glycol) methyl ether methacrylate copolymer brushes functionalized magnetic carbon nanotubes for the selective enrichment of glycoproteins [J].
An, Xiangyang ;
Wu, Haocheng ;
Li, Yijun ;
He, Xiwen ;
Chen, Langxing ;
Zhang, Yukui .
TALANTA, 2020, 210
[34]   Influence of the Poly(ethylene Glycol) Methyl Ether Methacrylates on the Selected Physicochemical Properties of Thermally Sensitive Polymeric Particles for Controlled Drug Delivery [J].
Gola, Agnieszka ;
Kozlowska, Maria ;
Musial, Witold .
POLYMERS, 2022, 14 (21)
[35]   Impact of oligoether chain lengths on the relaxation processes in poly(oligo (ethylene glycol) methyl ether methacrylate) networks that are synthesized by radiation-induced crosslinking polymerization [J].
Czaderna-Lekka, Anna ;
Piechocki, Krzysztof ;
Kozanecki, Marcin ;
Okrasa, Lidia .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2020, 140
[36]   Phase diagram for the gelation of temperature-responsive and biocompatible poly(oligo ethylene glycol methyl ether methacrylate) polymers in aqueous free-radical polymerization reactions [J].
Kureha, Takuma ;
Hirayama, Takuto ;
Nishi, Taichi .
POLYMER JOURNAL, 2024, 56 (11) :1017-1029
[37]   Construction of semi-fluorinated amphiphilic graft copolymer bearing a poly(2-methyl-1,4-bistrifluorovinyloxybenzene) backbone and poly(ethylene glycol) side chains via the grafting-onto strategy [J].
Lu, Guolin ;
Liu, Hao ;
Gao, Haifeng ;
Feng, Chun ;
Li, Yongjun ;
Huang, Xiaoyu .
RSC ADVANCES, 2015, 5 (50) :39668-39676
[38]   Amphiphilic comb-like pentablock copolymers of Pluronic L64 and poly(ethylene glycol)methyl ether methacrylate: synthesis by ATRP, self-assembly, and clouding behavior [J].
Perveen, Tamina ;
Ullah, Shakir ;
Siddiq, Mohammad ;
Shah, Syed Mujtaba ;
Khan, Asad Muhammad ;
Hussain, Hazrat .
IRANIAN POLYMER JOURNAL, 2018, 27 (05) :297-306
[39]   Synthesis and Self-Assembly of New Double-Crystalline Amphiphilic Polyethylene-block-Poly[oligo(ethylene glycol) Methyl Ether Methacrylate] Coil-Brush Diblock Copolymer [J].
Wang, Wanjuan ;
Liu, Ran ;
Li, Zhiyun ;
Meng, Chunfeng ;
Wu, Qing ;
Zhu, Fangming .
MACROMOLECULAR CHEMISTRY AND PHYSICS, 2010, 211 (13) :1452-1459
[40]   Thermo- and pH-responsive copolymer poly(t-butyl acrylate)-b-poly{[2-(dimethylamino) ethyl methacrylate]-co-[poly(ethylene glycol) methyl ether methacrylate]}: Preparation, characterization, and their applications as organic dye adsorbents and drug delivery systems [J].
Yang, Zhenglong ;
Fu, Kangyu ;
Yu, Jing ;
Zhou, Peiting ;
Cheng, Zhihao .
REACTIVE & FUNCTIONAL POLYMERS, 2018, 131 :342-349