Influence of sodium anhydroglucuronate on poly (di(ethylene glycol) methyl ether methacrylate) grafting onto isolated cellulose nanofibrils

被引:1
作者
Mariano, Marcos [1 ,5 ]
Fernandes, Ariane S. [1 ,6 ,7 ]
do Nascimento, Diego M. [1 ]
Duran, Nelson [2 ,3 ]
Bernardes, Juliana Silva [1 ,4 ]
机构
[1] Brazilian Ctr Res Energy & Mat, Brazilian Nanotechnol Natl Lab, BR-13083100 Campinas, SP, Brazil
[2] Univ Campinas UNICAMP, Dept Struct & Funct Biol, Lab Urogenital Carcinogenesis & Immunotherapy, Campinas, SP, Brazil
[3] Fed Univ ABC UFABC, Nanomed Res Unit NANOMED, Santo Andre, Brazil
[4] Fed Univ ABC, Ctr Nat & Human Sci, BR-09210580 Santo Andre, SP, Brazil
[5] Southeast Technol Univ SETU, Pharmaceut & Mol Biotechnol Res Ctr PMBRC, Main Campus,Cork Rd, Waterford X91K0EK, Ireland
[6] Univ British Columbia, Dept Wood Sci, Vancouver, BC V6T 1Z3, Canada
[7] Univ British Columbia, UBC Bioprod Inst, Vancouver, BC V6T 1Z3, Canada
基金
巴西圣保罗研究基金会;
关键词
Cellulose nanofibrils; Anhydroglucuronate units; PDEGMA; TRANSFER RADICAL POLYMERIZATION; SURFACE MODIFICATION; NANOCRYSTALS; COPOLYMERIZATION; STABILITY; OXIDATION; HYDROGELS;
D O I
10.1016/j.ijbiomac.2025.140794
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study investigates the temperature-triggered properties and phase behavior of poly(di(ethylene glycol) methyl ether methacrylate) (PDEGMA) grafted onto cellulose nanofibrils (CNF) before and after the removal of water-soluble cellulose derivatives. Mass conversion and 1H NMR analyses revealed that removing soluble molecules from the pristine nanofibril suspension decreased the quantity of free PDEGMA chains in the solution. Besides, cryogenic transmission electron microscopy (cryo-TEM) imaging above the lower critical solution temperature (LCST) highlighted the formation of unbound PDEGMA globular aggregates through the association of dehydrated chains and increased CNF thickness due to the grafting. Rheology and phase behavior analyses showed significant changes above LCST, with a higher concentration of free chains favoring the collapse of the CNF network at 35 degrees C. The proposed mechanism suggests that free polymer chains help to bridge neighboring fibrils, producing a robust hydrogel at lower solid content. These findings highlight the role of cellulose residues in grafting reactions and their impact on the structure and flow properties of the materials.
引用
收藏
页数:9
相关论文
共 42 条
[11]   Enhancing Antifouling Property of Polysulfone Ultrafiltration Membrane by Grafting Poly(ethylene glycol) Methyl Ether Methacrylate(PEGMA) via UV-initiated Polymerization [J].
Yu Hai-Jun ;
Cao Yi-Ming ;
Kang Guo-Dong ;
Zhou Mei-Qing ;
Liu Jian-Hui ;
Yuan Quan .
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2010, 31 (12) :2506-2510
[12]   Thin Poly(Di(Ethylene Glycol) Methyl Ether Methacrylate) Homopolymer Brushes Allow Controlled Adsorption and Desorption of PaTu 8988t Cells [J].
Voss, Yvonne ;
Wassel, Ekram ;
Jiang, Siyu ;
Song, Qimeng ;
Druzhinin, Sergey I. ;
Schoenherr, Holger .
MACROMOLECULAR BIOSCIENCE, 2017, 17 (04)
[13]   Grafting of Poly(poly(ethylene glycol) methacrylate) onto Halloysite Nanotubes via Surface-Initiated Atom Transfer Radical Polymerization [J].
Long Giang Bach ;
Trinh Duy Nguyen ;
Nguyen Thi Thuong ;
Ho Thi Thanh Van ;
Dai Hai Nguyen ;
Lim, Kwon Taek .
JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (02) :927-931
[14]   Probing the brush structure of end-tethered poly(oligo(ethylene glycol) methyl ether methacrylate) chains [J].
Romanenko, Iryna ;
Sivkova, Radoslava ;
Svoboda, Jan ;
Riedel, Tomas ;
Pereira, Andres de los Santos ;
Pop-Georgievski, Ognen .
POLYMER, 2025, 332
[15]   Preparation and Characterization of Alcogels Based on (Poly Ethylene Glycol Methyl Ether Methacrylate-Acrylic Acid) Copolymers [J].
Najafi, Vahid ;
Kabiri, Kourush ;
Ziaee, Farshid .
POLYMER-PLASTICS TECHNOLOGY AND ENGINEERING, 2013, 52 (07) :667-673
[16]   The polymerisation of oligo(ethylene glycol methyl ether) methacrylate from a multifunctional poly(ethylene imine) derived amide: a stabiliser for the synthesis and dispersion of magnetite nanoparticles [J].
Kleine, Aaron ;
Altan, Cem L. ;
Yarar, U. Ecem ;
Sommerdijk, Nico A. J. M. ;
Bucak, Seyda ;
Holder, Simon J. .
POLYMER CHEMISTRY, 2014, 5 (02) :524-534
[17]   Effect of Thermal Stimulus on Kinetic Rehydration of Thermoresponsive Poly(diethylene glycol monomethyl ether methacrylate)-block-poly(poly(ethylene glycol) methyl ether methacrylate) Thin Films Probed by In Situ Neutron Reflectivity [J].
Hu, Neng ;
Mi, Lei ;
Metwalli, Ezzeldin ;
Biessmann, Lorenz ;
Herold, Christian ;
Cubitt, Robert ;
Zhong, Qi ;
Mueller-Buschbaum, Peter .
LANGMUIR, 2022, 38 (26) :8094-8103
[18]   Impact of Thermal History on the Kinetic Response of Thermoresponsive Poly(diethylene glycol monomethyl ether methacrylate)-block-poly(poly(ethylene glycol)methyl ether methacrylate) Thin Films Investigated by In Situ Neutron Reflectivity [J].
Zhong, Qi ;
Hu, Neng ;
Mi, Lei ;
Wang, Ji-Ping ;
Metwalli, Ezzeldin ;
Biessmann, Lorenz ;
Herold, Christian ;
Yang, Jing ;
Wu, Guang-Peng ;
Xu, Zhi-Kang ;
Cubitt, Robert ;
Mueller-Buschbaum, Peter .
LANGMUIR, 2020, 36 (22) :6228-6237
[19]   Poly(ethylene glycol) methyl ether methacrylate-graft-chitosan nanoparticles as a biobased nanofiller for a poly(lactic acid) blend: Radiation-induced grafting and performance studies [J].
Kongkaoroptham, Parichart ;
Piroonpan, Thananchai ;
Hemvichian, Kasinee ;
Suwanmala, Phiriyatorn ;
Rattanasakulthong, Watcharee ;
Pasanphan, Wanvimol .
JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (37)
[20]   Surface modification of intraocular lens material by poly(ethylene glycol) methyl ether methacrylate via a plasma technique to influence posterior capsular opacification [J].
Li, Lingli ;
Luo, Li ;
Xu, Xu ;
Nan, Kaihui ;
Chen, Hao .
JOURNAL OF CONTROLLED RELEASE, 2011, 152 :E220-E221