Opportunities for biogas production from algal biomass

被引:2
作者
Anacleto, Thuane M. [1 ,2 ]
Soares, Nathalia B. [1 ,2 ]
de Lelis, Diego-Caetano C. [1 ,2 ]
de Oliveira, Vinicius P. [2 ]
Enrich-Prast, Alex [2 ,3 ,4 ,5 ]
机构
[1] Univ Fed Rio De Janeiro, Programa Posgrad Biotecnol Vegetal & Bioproc, Rio De Janeiro, Brazil
[2] Univ Fed Rio De Janeiro, Unidade Multiusuario Anal Ambientais, Rio De Janeiro, Brazil
[3] Fed Univ Sao Paulo IMar UNIFESP, Inst Marine Sci, Santos, Brazil
[4] Linkoping Univ, Dept Themat Studies Environm Change, Linkoping, Sweden
[5] Linkoping Univ, Biogas Solut Res Ctr BSRC, Linkoping, Sweden
来源
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR | 2025年 / 19卷 / 01期
关键词
anaerobic digestion; microalgae; macroalgae; meta-analysis; methane; pretreatment; MECHANICAL PRETREATMENT; BIOFUELS PRODUCTION; MICROALGAE; MACROALGAE; BIOENERGY; PROGRESS; YIELD;
D O I
10.1002/bbb.2702
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Energy security is a critical global challenge in the transition to sustainable development. Anaerobic digestion (AD) offers a promising renewable energy solution that mitigates environmental impacts. Algae, as biomass feedstock, have shown significant potential for bioenergy production; however, their complex chemical composition poses challenges to the efficiency of the AD process. To address these limitations, various pretreatment methods have been applied to enhance biogas production. In this study, we performed a comprehensive meta-analysis to evaluate the effects of different pretreatments on methane (CH4) yields from both microalgae and macroalgae. Our results demonstrate that biological, physical, and combined chemical-physical pretreatments significantly improve CH4 production in microalgae, with increases of up to 141%, 125%, and 151%, respectively. For macroalgae, physical pretreatments were the most effective, leading to a 129% increase in CH4 yield. We also estimate that utilizing just 10% of the global algal biomass production (3.6 Mt) could generate over 5.5 TWh y-1 of energy. This potential could be doubled with the application of appropriate pretreatment strategies. These findings highlight the role of algae in advancing renewable energy production and contribute to the growing body of knowledge on optimizing AD processes for cleaner energy generation.
引用
收藏
页码:163 / 173
页数:11
相关论文
共 63 条
[1]   RETRACTED: Pretreatment strategies for enhanced biogas production from lignocellulosic biomass [J].
Abraham, Amith ;
Mathew, Anil K. ;
Park, Hyojung ;
Choi, Okkyoung ;
Sindhu, Raveendran ;
Parameswaran, Binod ;
Pandey, Ashok ;
Park, Jung Han ;
Sang, Byoung-In .
BIORESOURCE TECHNOLOGY, 2020, 301
[2]   Algae biofuel: Current status and future applications [J].
Adeniyi, Oladapo Martins ;
Azimov, Ulugbek ;
Burluka, Alexey .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 90 :316-335
[3]   Cyanobacterial Biomass Produced in the Wastewater of the Dairy Industry and Its Evaluation in Anaerobic Co-Digestion with Cattle Manure for Enhanced Methane Production [J].
Alvarez, Xavier ;
Arevalo, Olga ;
Salvador, Miriam ;
Mercado, Ingrid ;
Velazquez-Marti, Borja .
PROCESSES, 2020, 8 (10) :1-16
[4]   Methane yield response to pretreatment is dependent on substrate chemical composition: a meta-analysis on anaerobic digestion systems [J].
Anacleto, Thuane Mendes ;
Kozlowsky-Suzuki, Betina ;
Bjorn, Annika ;
Yekta, Sepehr Shakeri ;
Masuda, Laura Shizue Moriga ;
de Oliveira, Vinicius Peruzzi ;
Enrich-Prast, Alex .
SCIENTIFIC REPORTS, 2024, 14 (01)
[5]   Boosting manure biogas production with the application of pretreatments: A meta-analysis [J].
Anacleto, Thuane Mendes ;
Oliveira, Helena Rodrigues ;
Diniz, Vinicius Lacerda ;
de Oliveira, Vinicius Peruzzi ;
Abreu, Fernanda ;
Enrich-Prast, Alex .
JOURNAL OF CLEANER PRODUCTION, 2022, 362
[6]   Improvement of lignocellulosic pretreatment efficiency by combined chemo - Mechanical pretreatment for energy consumption reduction and biofuel production [J].
Areepak, Chitchanok ;
Jiradechakorn, Thitirat ;
Chuetor, Santi ;
Phalakornkule, Chantaraporn ;
Sriariyanun, Malinee ;
Raita, Marisa ;
Champreda, Verawat ;
Laosiripojana, Navadol .
RENEWABLE ENERGY, 2022, 182 :1094-1102
[7]   The dynamic impact of biomass and natural resources on ecological footprint in BRICS economies: A quantile regression evidence [J].
Awosusi, Abraham Ayobamiji ;
Adebayo, Tomiwa Sunday ;
Altuntas, Mehmet ;
Agyekum, Ephraim Bonah ;
Zawbaa, Hossam M. ;
Kamel, Salah .
ENERGY REPORTS, 2022, 8 :1979-1994
[8]   Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion [J].
Bruhn, Annette ;
Dahl, Jonas ;
Nielsen, Henrik Bangso ;
Nikolaisen, Lars ;
Rasmussen, Michael Bo ;
Markager, Stiig ;
Olesen, Birgit ;
Arias, Carlos ;
Jensen, Peter Daugbjerg .
BIORESOURCE TECHNOLOGY, 2011, 102 (03) :2595-2604
[9]   Lignocellulose Pretreatment Combining Continuous Alkaline Single-Screw Extrusion and Ultrasonication to Enhance Biosugar Production [J].
Byun, Jongwon ;
Cha, Young-Lok ;
Park, Sung-Min ;
Kim, Kwang-Soo ;
Lee, Ji-Eun ;
Kang, Yong-Gu .
ENERGIES, 2020, 13 (21)
[10]  
Cai J., Seaweeds and microalgae: an overview for unlocking their potential in global aquaculture development, DOI DOI 10.4060/CB5670EN