Explainable Machine-Learning for identifying the genetic biomarker MGMT in brain tumors using magnetic resonance imaging radiomics

被引:1
|
作者
Ponce, Sebastian [1 ,2 ]
Chabert, Steren [2 ,3 ]
Mayeta, Leondry [1 ,2 ]
Franco, Pamela [4 ]
Plaza-Vega, Francisco [5 ]
Querales, Marvin [4 ,6 ]
Salas, Rodrigo [2 ,3 ]
机构
[1] Univ Valparaiso, Hlth Sci & Engn, Valparaiso, Chile
[2] Millennium Inst Intelligent Healthcare Engn iHEAL, Ctr Interdisciplinary Biomed & Engn Res Hlth, Valparaiso, Chile
[3] Univ Valparaiso, Sch Biomed Engn, Valparaiso, Chile
[4] Ctr Interdisciplinary Biomed & Engn Res Hlth, Valparaiso, Chile
[5] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Santiago, Chile
[6] Univ Valparaiso, Sch Med Technol, Valparaiso, Chile
来源
2024 14TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS | 2024年
关键词
O6-Methylguanine-DNA-Methyltransferase (MGMT) methylation; genetic biomarkers; machine learning; radiomics; explainability; magnetic resonance imaging; brain tumors; PROMOTER METHYLATION; GLIOBLASTOMA;
D O I
10.1109/ICPRS62101.2024.10677829
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumors often feature the genetic biomarker O6-Methylguanine-DNA-Methyltransferase (MGMT) associated with a favorable response to chemotherapy and an improved prognosis. Currently, detecting MGMT presence relies on invasive brain biopsy procedures. Thus, this study aims to develop a data mining-based radiomics methodology for non-invasive identifying and evaluating brain tumor genetic biomarkers using radiomics in magnetic resonance images (MRIs). MRIs with segmentation masks were used to extract variables and employ feature selection techniques. Several machine learning models were trained, where Logistic Regression, employing LASSO selection, emerged as the best-performing model, achieving 61% accuracy. Additionally, an explainability module utilizing Shap values identified three significant variables: a T1CE sequence variable related to texture, a FLAIR sequence variable of first-order statistics, and a T1 sequence variable of first-order statistics. This radiomic methodology, with its performance and explainable nature, could offer diagnostic support to clinicians in tumor management.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A non-invasive, automated diagnosis of Menière’s disease using radiomics and machine learning on conventional magnetic resonance imaging: A multicentric, case-controlled feasibility study
    Marly F. J. A. van der Lubbe
    Akshayaa Vaidyanathan
    Marjolein de Wit
    Elske L. van den Burg
    Alida A. Postma
    Tjasse D. Bruintjes
    Monique A. L. Bilderbeek-Beckers
    Patrick F. M. Dammeijer
    Stephanie Vanden Bossche
    Vincent Van Rompaey
    Philippe Lambin
    Marc van Hoof
    Raymond van de Berg
    La radiologia medica, 2022, 127 : 72 - 82
  • [42] Machine learning with multiple modalities of brain magnetic resonance imaging data to identify the presence of bipolar disorder
    Deng, Lubin R.
    Harmata, Gail I. S.
    Barsotti, Ercole John
    Williams, Aislinn J.
    Christensen, Gary E.
    Voss, Michelle W.
    Saleem, Arshaq
    Rivera-Dompenciel, Adriana M.
    Richards, Jenny Gringer
    Sathyaputri, Leela
    Mani, Merry
    Abdolmotalleby, Hesam
    Fiedorowicz, Jess G.
    Xu, Jia
    Shaffer, Joseph J.
    Wemmie, John A.
    Magnotta, Vincent A.
    JOURNAL OF AFFECTIVE DISORDERS, 2025, 368 : 448 - 460
  • [43] An Efficient Ensemble Approach for Brain Tumors Classification Using Magnetic Resonance Imaging
    Saeed, Zubair
    Torfeh, Tarraf
    Aouadi, Souha
    Ji, Xiuquan
    Bouhali, Othmane
    INFORMATION, 2024, 15 (10)
  • [44] Identification of potentially painful disc fissures in magnetic resonance images using machine-learning modelling
    Kerstin Lagerstrand
    Hanna Hebelka
    Helena Brisby
    European Spine Journal, 2022, 31 (8) : 1992 - 1999
  • [45] Identification of potentially painful disc fissures in magnetic resonance images using machine-learning modelling
    Kerstin, Lagerstrand
    Hanna, Hebelka
    Helerna, Brisby
    EUROPEAN SPINE JOURNAL, 2022, 31 (08) : 1992 - 1999
  • [46] Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment
    Granata, Vincenza
    Fusco, Roberta
    De Muzio, Federica
    Brunese, Maria Chiara
    Setola, Sergio Venanzio
    Ottaiano, Alessandro
    Cardone, Claudia
    Avallone, Antonio
    Patrone, Renato
    Pradella, Silvia
    Miele, Vittorio
    Tatangelo, Fabiana
    Cutolo, Carmen
    Maggialetti, Nicola
    Caruso, Damiano
    Izzo, Francesco
    Petrillo, Antonella
    RADIOLOGIA MEDICA, 2023, 128 (11): : 1310 - 1332
  • [47] Radiomics and Machine Learning Analysis Based on Magnetic Resonance Imaging in the Assessment of Colorectal Liver Metastases Growth Pattern
    Granata, Vincenza
    Fusco, Roberta
    De Muzio, Federica
    Cutolo, Carmen
    Raso, Mauro Mattace
    Gabelloni, Michela
    Avallone, Antonio
    Ottaiano, Alessandro
    Tatangelo, Fabiana
    Brunese, Maria Chiara
    Miele, Vittorio
    Izzo, Francesco
    Petrillo, Antonella
    DIAGNOSTICS, 2022, 12 (05)
  • [48] Posterior circulation ischemic stroke: radiomics-based machine learning approach to identify onset time from magnetic resonance imaging
    Liu, Zhenhao
    Zhang, Shiyu
    Wang, Yuxin
    Xu, Hui
    Gao, Yongqiang
    Jin, Hong
    Zhang, Yufeng
    Wu, Hongyang
    Lu, Jun
    Chen, Peipei
    Qiao, Peng-Gang
    Yang, Zhenghan
    NEURORADIOLOGY, 2024, 66 (07) : 1141 - 1152
  • [49] Radiomics and machine learning analysis by computed tomography and magnetic resonance imaging in colorectal liver metastases prognostic assessment
    Vincenza Granata
    Roberta Fusco
    Federica De Muzio
    Maria Chiara Brunese
    Sergio Venanzio Setola
    Alessandro Ottaiano
    Claudia Cardone
    Antonio Avallone
    Renato Patrone
    Silvia Pradella
    Vittorio Miele
    Fabiana Tatangelo
    Carmen Cutolo
    Nicola Maggialetti
    Damiano Caruso
    Francesco Izzo
    Antonella Petrillo
    La radiologia medica, 2023, 128 (11) : 1310 - 1332
  • [50] Predictive value of magnetic resonance imaging radiomics-based machine learning for disease progression in patients with high- grade glioma
    Li, Zhibin
    Chen, Li
    Song, Ying
    Dai, Guyu
    Duan, Lian
    Luo, Yong
    Wang, Guangyu
    Xiao, Qing
    Li, Guangjun
    Bai, Sen
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (01) : 224 - 236