Explainable Machine-Learning for identifying the genetic biomarker MGMT in brain tumors using magnetic resonance imaging radiomics

被引:1
|
作者
Ponce, Sebastian [1 ,2 ]
Chabert, Steren [2 ,3 ]
Mayeta, Leondry [1 ,2 ]
Franco, Pamela [4 ]
Plaza-Vega, Francisco [5 ]
Querales, Marvin [4 ,6 ]
Salas, Rodrigo [2 ,3 ]
机构
[1] Univ Valparaiso, Hlth Sci & Engn, Valparaiso, Chile
[2] Millennium Inst Intelligent Healthcare Engn iHEAL, Ctr Interdisciplinary Biomed & Engn Res Hlth, Valparaiso, Chile
[3] Univ Valparaiso, Sch Biomed Engn, Valparaiso, Chile
[4] Ctr Interdisciplinary Biomed & Engn Res Hlth, Valparaiso, Chile
[5] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Santiago, Chile
[6] Univ Valparaiso, Sch Med Technol, Valparaiso, Chile
来源
2024 14TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS | 2024年
关键词
O6-Methylguanine-DNA-Methyltransferase (MGMT) methylation; genetic biomarkers; machine learning; radiomics; explainability; magnetic resonance imaging; brain tumors; PROMOTER METHYLATION; GLIOBLASTOMA;
D O I
10.1109/ICPRS62101.2024.10677829
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumors often feature the genetic biomarker O6-Methylguanine-DNA-Methyltransferase (MGMT) associated with a favorable response to chemotherapy and an improved prognosis. Currently, detecting MGMT presence relies on invasive brain biopsy procedures. Thus, this study aims to develop a data mining-based radiomics methodology for non-invasive identifying and evaluating brain tumor genetic biomarkers using radiomics in magnetic resonance images (MRIs). MRIs with segmentation masks were used to extract variables and employ feature selection techniques. Several machine learning models were trained, where Logistic Regression, employing LASSO selection, emerged as the best-performing model, achieving 61% accuracy. Additionally, an explainability module utilizing Shap values identified three significant variables: a T1CE sequence variable related to texture, a FLAIR sequence variable of first-order statistics, and a T1 sequence variable of first-order statistics. This radiomic methodology, with its performance and explainable nature, could offer diagnostic support to clinicians in tumor management.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Magnetic Resonance Radiomics and Machine-learning Models: An Approach for Evaluating Tumor-stroma Ratio in Patients with Pancreatic Ductal Adenocarcinoma
    Meng, Yinghao
    Zhang, Hao
    Li, Qi
    Liu, Fang
    Fang, Xu
    Li, Jing
    Yu, Jieyu
    Feng, Xiaochen
    Lu, Jianping
    Bian, Yun
    Shao, Chengwei
    ACADEMIC RADIOLOGY, 2022, 29 (04) : 523 - 535
  • [22] Comparison and analysis of multiple machine learning models for discriminating benign and malignant testicular lesions based on magnetic resonance imaging radiomics
    Feng, Yanhui
    Feng, Zhaoyan
    Wang, Liang
    Lv, Wenzhi
    Liu, Zhiyong
    Min, Xiangde
    Li, Jin
    Zhang, Jiaxuan
    FRONTIERS IN MEDICINE, 2023, 10
  • [23] Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans
    Najafian, Keyhan
    Rehany, Benjamin
    Nowakowski, Alexander
    Ghazimoghadam, Saba
    Pierre, Kevin
    Zakarian, Rita
    Al-Saadi, Tariq
    Reinhold, Caroline
    Babajani-Feremi, Abbas
    Wong, Joshua K.
    Guiot, Marie-Christine
    Lacasse, Marie-Constance
    Lam, Stephanie
    Siegel, Peter M.
    Petrecca, Kevin
    Dankner, Matthew
    Forghani, Reza
    NEURO-ONCOLOGY ADVANCES, 2024, 6 (01)
  • [24] Assessing Glioblastoma Treatment Response Using Machine Learning Approach Based on Magnetic Resonance Images Radiomics: An Exploratory Study
    Sadeghinasab, Amirreza
    Fatahiasl, Jafar
    Tahmasbi, Marziyeh
    Razmjoo, Sasan
    Yousefipour, Mohammad
    HEALTH SCIENCE REPORTS, 2025, 8 (01)
  • [25] Machine Learning and Radiomics Analysis for Tumor Budding Prediction in Colorectal Liver Metastases Magnetic Resonance Imaging Assessment
    Granata, Vincenza
    Fusco, Roberta
    Brunese, Maria Chiara
    Ferrara, Gerardo
    Tatangelo, Fabiana
    Ottaiano, Alessandro
    Avallone, Antonio
    Miele, Vittorio
    Normanno, Nicola
    Izzo, Francesco
    Petrillo, Antonella
    DIAGNOSTICS, 2024, 14 (02)
  • [26] Using ensemble learning and genetic algorithm on magnetic resonance imaging radiomics to classify molecular subtypes of breast cancer
    Le, Nguyen Quoc Khanh
    Ho, Dang Khanh Ngan
    Ta, Hoang Dang Khoa
    Nguyen, Hieu Trung
    PRECISION MEDICAL SCIENCES, 2023, 12 (02): : 104 - 112
  • [27] Non-invasively identifying candidates of active surveillance for prostate cancer using magnetic resonance imaging radiomics
    Liu, Yuwei
    Zhao, Litao
    Bao, Jie
    Hou, Jian
    Jing, Zhaozhao
    Liu, Songlu
    Li, Xuanhao
    Cao, Zibing
    Yang, Boyu
    Shen, Junkang
    Zhang, Ji
    Ji, Libiao
    Kang, Zhen
    Hu, Chunhong
    Wang, Liang
    Liu, Jiangang
    VISUAL COMPUTING FOR INDUSTRY BIOMEDICINE AND ART, 2024, 7 (01)
  • [28] Machine learning-based multiparametric magnetic resonance imaging radiomics model for distinguishing central neurocytoma from glioma of lateral ventricle
    Mo, Haizhu
    Liang, Wen
    Huang, Zhousan
    Li, Xiaodan
    Xiao, Xiang
    Liu, Hao
    He, Jianming
    Xu, Yikai
    Wu, Yuankui
    EUROPEAN RADIOLOGY, 2023, 33 (06) : 4259 - 4269
  • [29] Noninvasive grading of glioma brain tumors using magnetic resonance imaging and deep learning methods
    Song, Guanghui
    Xie, Guanbao
    Nie, Yan
    Majid, Mohammed Sh.
    Yavari, Iman
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (18) : 16293 - 16309
  • [30] Noninvasive grading of glioma brain tumors using magnetic resonance imaging and deep learning methods
    Guanghui Song
    Guanbao Xie
    Yan Nie
    Mohammed Sh. Majid
    Iman Yavari
    Journal of Cancer Research and Clinical Oncology, 2023, 149 : 16293 - 16309