Explainable Machine-Learning for identifying the genetic biomarker MGMT in brain tumors using magnetic resonance imaging radiomics

被引:1
|
作者
Ponce, Sebastian [1 ,2 ]
Chabert, Steren [2 ,3 ]
Mayeta, Leondry [1 ,2 ]
Franco, Pamela [4 ]
Plaza-Vega, Francisco [5 ]
Querales, Marvin [4 ,6 ]
Salas, Rodrigo [2 ,3 ]
机构
[1] Univ Valparaiso, Hlth Sci & Engn, Valparaiso, Chile
[2] Millennium Inst Intelligent Healthcare Engn iHEAL, Ctr Interdisciplinary Biomed & Engn Res Hlth, Valparaiso, Chile
[3] Univ Valparaiso, Sch Biomed Engn, Valparaiso, Chile
[4] Ctr Interdisciplinary Biomed & Engn Res Hlth, Valparaiso, Chile
[5] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Santiago, Chile
[6] Univ Valparaiso, Sch Med Technol, Valparaiso, Chile
来源
2024 14TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS | 2024年
关键词
O6-Methylguanine-DNA-Methyltransferase (MGMT) methylation; genetic biomarkers; machine learning; radiomics; explainability; magnetic resonance imaging; brain tumors; PROMOTER METHYLATION; GLIOBLASTOMA;
D O I
10.1109/ICPRS62101.2024.10677829
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumors often feature the genetic biomarker O6-Methylguanine-DNA-Methyltransferase (MGMT) associated with a favorable response to chemotherapy and an improved prognosis. Currently, detecting MGMT presence relies on invasive brain biopsy procedures. Thus, this study aims to develop a data mining-based radiomics methodology for non-invasive identifying and evaluating brain tumor genetic biomarkers using radiomics in magnetic resonance images (MRIs). MRIs with segmentation masks were used to extract variables and employ feature selection techniques. Several machine learning models were trained, where Logistic Regression, employing LASSO selection, emerged as the best-performing model, achieving 61% accuracy. Additionally, an explainability module utilizing Shap values identified three significant variables: a T1CE sequence variable related to texture, a FLAIR sequence variable of first-order statistics, and a T1 sequence variable of first-order statistics. This radiomic methodology, with its performance and explainable nature, could offer diagnostic support to clinicians in tumor management.
引用
收藏
页数:6
相关论文
共 50 条
  • [11] Radiomics-Based Machine Learning Classification for Glioma Grading Using Diffusion- and Perfusion-Weighted Magnetic Resonance Imaging
    Hashido, Takashi
    Saito, Shigeyoshi
    Ishida, Takayuki
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2021, 45 (04) : 606 - 613
  • [12] The Diagnostic Value of Radiomics-Based Machine Learning in Predicting the Grade of Meningiomas Using Conventional Magnetic Resonance Imaging: A Preliminary Study
    Chen, Chaoyue
    Guo, Xinyi
    Wang, Jian
    Guo, Wen
    Ma, Xuelei
    Xu, Jianguo
    FRONTIERS IN ONCOLOGY, 2019, 9
  • [13] A Pipeline for the Implementation and Visualization of Explainable Machine Learning for Medical Imaging Using Radiomics Features
    Severn, Cameron
    Suresh, Krithika
    Gorg, Carsten
    Choi, Yoon Seong
    Jain, Rajan
    Ghosh, Debashis
    SENSORS, 2022, 22 (14)
  • [14] Differentiating Radiation Necrosis and Metastatic Progression in Brain Tumors Using Radiomics and Machine Learning
    Salari, Elahheh
    Elsamaloty, Haitham
    Ray, Aniruddha
    Hadziahmetovic, Mersiha
    Parsai, E. Ishmael
    AMERICAN JOURNAL OF CLINICAL ONCOLOGY-CANCER CLINICAL TRIALS, 2023, 46 (11): : 486 - 495
  • [15] Prognostic prediction of left ventricular myocardial noncompaction using machine learning and cardiac magnetic resonance radiomics
    Han, Pei-Lun
    Jiang, Ze-Kun
    Gu, Ran
    Huang, Shan
    Jiang, Yu
    Yang, Zhi-Gang
    Li, Kang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2023, 13 (10) : 6468 - +
  • [16] Identifying Genetic Mutation Status in Patients with Colorectal Cancer Liver Metastases Using Radiomics-Based Machine-Learning Models
    Wesdorp, Nina
    Zeeuw, Michiel
    van der Meulen, Delanie
    van't Erve, Iris
    Bodalal, Zuhir
    Roor, Joran
    van Waesberghe, Jan Hein
    Moos, Shira
    van den Bergh, Janneke
    Nota, Irene
    van Dieren, Susan
    Stoker, Jaap
    Meijer, Gerrit
    Swijnenburg, Rutger-Jan
    Punt, Cornelis
    Huiskens, Joost
    Beets-Tan, Regina
    Fijneman, Remond
    Marquering, Henk
    Kazemier, Geert
    CANCERS, 2023, 15 (23)
  • [17] Machine-Learning-Based Radiomics for Classifying Glioma Grade from Magnetic Resonance Images of the Brain
    Kumar, Anuj
    Jha, Ashish Kumar
    Agarwal, Jai Prakash
    Yadav, Manender
    Badhe, Suvarna
    Sahay, Ayushi
    Epari, Sridhar
    Sahu, Arpita
    Bhattacharya, Kajari
    Chatterjee, Abhishek
    Ganeshan, Balaji
    Rangarajan, Venkatesh
    Moyiadi, Aliasgar
    Gupta, Tejpal
    Goda, Jayant S.
    JOURNAL OF PERSONALIZED MEDICINE, 2023, 13 (06):
  • [18] Radiomics and machine learning analysis based on magnetic resonance imaging in the assessment of liver mucinous colorectal metastases
    Vincenza Granata
    Roberta Fusco
    Federica De Muzio
    Carmen Cutolo
    Sergio Venanzio Setola
    Federica Dell’Aversana
    Francesca Grassi
    Andrea Belli
    Lucrezia Silvestro
    Alessandro Ottaiano
    Guglielmo Nasti
    Antonio Avallone
    Federica Flammia
    Vittorio Miele
    Fabiana Tatangelo
    Francesco Izzo
    Antonella Petrillo
    La radiologia medica, 2022, 127 : 763 - 772
  • [19] Radiomics and machine learning analysis based on magnetic resonance imaging in the assessment of liver mucinous colorectal metastases
    Granata, Vincenza
    Fusco, Roberta
    De Muzio, Federica
    Cutolo, Carmen
    Setola, Sergio Venanzio
    Dell'Aversana, Federica
    Grassi, Francesca
    Belli, Andrea
    Silvestro, Lucrezia
    Ottaiano, Alessandro
    Nasti, Guglielmo
    Avallone, Antonio
    Flammia, Federica
    Miele, Vittorio
    Tatangelo, Fabiana
    Izzo, Francesco
    Petrillo, Antonella
    RADIOLOGIA MEDICA, 2022, 127 (07): : 763 - 772
  • [20] Machine learning–based multiparametric magnetic resonance imaging radiomics model for distinguishing central neurocytoma from glioma of lateral ventricle
    Haizhu Mo
    Wen Liang
    Zhousan Huang
    Xiaodan Li
    Xiang Xiao
    Hao Liu
    Jianming He
    Yikai Xu
    Yuankui Wu
    European Radiology, 2023, 33 : 4259 - 4269