Explainable Machine-Learning for identifying the genetic biomarker MGMT in brain tumors using magnetic resonance imaging radiomics

被引:0
|
作者
Ponce, Sebastian [1 ,2 ]
Chabert, Steren [2 ,3 ]
Mayeta, Leondry [1 ,2 ]
Franco, Pamela [4 ]
Plaza-Vega, Francisco [5 ]
Querales, Marvin [4 ,6 ]
Salas, Rodrigo [2 ,3 ]
机构
[1] Univ Valparaiso, Hlth Sci & Engn, Valparaiso, Chile
[2] Millennium Inst Intelligent Healthcare Engn iHEAL, Ctr Interdisciplinary Biomed & Engn Res Hlth, Valparaiso, Chile
[3] Univ Valparaiso, Sch Biomed Engn, Valparaiso, Chile
[4] Ctr Interdisciplinary Biomed & Engn Res Hlth, Valparaiso, Chile
[5] Univ Santiago Chile, Dept Matemat & Ciencia Comp, Santiago, Chile
[6] Univ Valparaiso, Sch Med Technol, Valparaiso, Chile
来源
2024 14TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS | 2024年
关键词
O6-Methylguanine-DNA-Methyltransferase (MGMT) methylation; genetic biomarkers; machine learning; radiomics; explainability; magnetic resonance imaging; brain tumors; PROMOTER METHYLATION; GLIOBLASTOMA;
D O I
10.1109/ICPRS62101.2024.10677829
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Brain tumors often feature the genetic biomarker O6-Methylguanine-DNA-Methyltransferase (MGMT) associated with a favorable response to chemotherapy and an improved prognosis. Currently, detecting MGMT presence relies on invasive brain biopsy procedures. Thus, this study aims to develop a data mining-based radiomics methodology for non-invasive identifying and evaluating brain tumor genetic biomarkers using radiomics in magnetic resonance images (MRIs). MRIs with segmentation masks were used to extract variables and employ feature selection techniques. Several machine learning models were trained, where Logistic Regression, employing LASSO selection, emerged as the best-performing model, achieving 61% accuracy. Additionally, an explainability module utilizing Shap values identified three significant variables: a T1CE sequence variable related to texture, a FLAIR sequence variable of first-order statistics, and a T1 sequence variable of first-order statistics. This radiomic methodology, with its performance and explainable nature, could offer diagnostic support to clinicians in tumor management.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Machine-learning radiomics to predict bone marrow metastasis of neuroblastoma using magnetic resonance imaging
    Lv, Lin
    Zhang, Zhengtao
    Zhang, Dongbo
    Chen, Qinchang
    Liu, Yuanfang
    Qiu, Ya
    Fu, Wen
    Yin, Xuntao
    Chen, Xiong
    CANCER INNOVATION, 2023, 2 (05): : 405 - 415
  • [2] Utilizing machine-learning techniques on MRI radiomics to identify primary tumors in brain metastases
    Yang, W. L.
    Su, X. R.
    Li, S.
    Zhao, K. Y.
    Yue, Q.
    FRONTIERS IN NEUROLOGY, 2025, 15
  • [3] Grading and Staging of Bladder Tumors Using Radiomics Analysis in Magnetic Resonance Imaging
    Benfante, Viviana
    Salvaggio, Giuseppe
    Ali, Muhammad
    Cutaia, Giuseppe
    Salvaggio, Leonardo
    Salerno, Sergio
    Buse, Gabriele
    Tulone, Gabriele
    Pavan, Nicola
    Di Raimondo, Domenico
    Tuttolomondo, Antonino
    Simonato, Alchiede
    Comelli, Albert
    IMAGE ANALYSIS AND PROCESSING - ICIAP 2023 WORKSHOPS, PT II, 2024, 14366 : 93 - 103
  • [4] Machine Learning Augmented Breast Tumors Classification using Magnetic Resonance Imaging Histograms
    Sayed, Ahmed M.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (12) : 1 - 9
  • [5] Radiomics-Based Machine Learning to Predict Recurrence in Glioma Patients Using Magnetic Resonance Imaging
    Hu, Guanjie
    Hu, Xinhua
    Yang, Kun
    Yu, Yun
    Jiang, Zijuan
    Liu, Yong
    Liu, Dongming
    Hu, Xiao
    Xiao, Hong
    Zou, Yuanjie
    You, Yongping
    Liu, Hongyi
    Chen, Jiu
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2023, 47 (01) : 129 - 135
  • [6] Automated Classification of Brain Tumors from Magnetic Resonance Imaging Using Deep Learning
    Rasheed, Zahid
    Ma, Yong-Kui
    Ullah, Inam
    Al Shloul, Tamara
    Tufail, Ahsan Bin
    Ghadi, Yazeed Yasin
    Khan, Muhammad Zubair
    Mohamed, Heba G.
    BRAIN SCIENCES, 2023, 13 (04)
  • [7] Molecular subtype classification of low-grade gliomas using magnetic resonance imaging-based radiomics and machine learning
    Lam, Luu Ho Thanh
    Do, Duyen Thi
    Diep, Doan Thi Ngoc
    Nguyet, Dang Le Nhu
    Truong, Quang Dinh
    Tri, Tran Thanh
    Thanh, Huynh Ngoc
    Le, Nguyen Quoc Khanh
    NMR IN BIOMEDICINE, 2022, 35 (11)
  • [8] Diagnostic Value of Magnetic Resonance Imaging Radiomics and Machine-learning in Grading Soft Tissue Sarcoma: A Mini-review on the Current State
    Schmitz, Fabian
    Sedaghat, Sam
    ACADEMIC RADIOLOGY, 2025, 32 (01) : 311 - 315
  • [9] Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging
    Vincenza Granata
    Roberta Fusco
    Maria Chiara Brunese
    Annabella Di Mauro
    Antonio Avallone
    Alessandro Ottaiano
    Francesco Izzo
    Nicola Normanno
    Antonella Petrillo
    La radiologia medica, 2024, 129 : 420 - 428
  • [10] Machine learning-based radiomics analysis in predicting RAS mutational status using magnetic resonance imaging
    Granata, Vincenza
    Fusco, Roberta
    Brunese, Maria Chiara
    Di Mauro, Annabella
    Avallone, Antonio
    Ottaiano, Alessandro
    Izzo, Francesco
    Normanno, Nicola
    Petrillo, Antonella
    RADIOLOGIA MEDICA, 2024, 129 (03): : 420 - 428