Carbon dioxide capture by using hybrid system. Parametric sensitivity analysis and environmental and energy evaluation

被引:0
作者
Torres, F. B. [1 ,2 ]
Gutierrez, J. P. [1 ,2 ,3 ]
Ruiz, L. A. [2 ,3 ]
Bertuzzi, M. A. [1 ,2 ,3 ]
Erdmann, E. [1 ,2 ,3 ,4 ]
机构
[1] CONICET UNSa, Inst Invest Ind Quim INIQUI, Av Bolivia 5150, RA-4400 Salta, Argentina
[2] Univ Nacl Salta, Consejo Invest, Av Bolivia 5150, RA-4400 Salta, Argentina
[3] Univ Nacl Salta, Fac Ingn, Av Bolivia 5150,5150, RA-4400 Salta, Argentina
[4] Univ Catolica Salta, Campo Castanares S-N, RA-4400 Salta, Argentina
关键词
CO2; 2; capture; Cryogenic; Membrane; Separation; CO2; CAPTURE; SEPARATION;
D O I
10.52292/j.laar.2024.3280
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Global warming is mainly caused by carbon dioxide (CO2). 2 ). When dealing with natural gas streams containing high concentrations of CO2, 2 , a combination of different technologies, such as absorption, adsorption, membrane, and cryogenic separation, can offer a more convenient and effective mean for separating acid gas. This study focuses on a gas stream that contains 81.14 mole % of CO2. 2 . Two hybrid processes, membrane-absorption with amines and cryogenic-membrane, were evaluated for their capital cost, energy and water consumption, and greenhouse gas (GHG) emissions under different operational conditions. This assessment was carried out using ASPEN HYSYS V.12. The membrane-absorption system demonstrates the least CH4 4 losses, while the hybrid cryogenic-membrane system displayed reduced energy and water requirements and 69 % less GHG emissions than the membrane-amine hybrid system. The cryogenic-membrane system is suitable for enhanced oil recovery (EOR) due to its high purity CO2 2 output and 30 % lower operational costs, although requiring a slightly higher initial investment.
引用
收藏
页码:425 / 430
页数:6
相关论文
共 21 条
  • [1] H2S and CO2 capture from gaseous fuels using nanoparticle membrane
    Abdolahi-Mansoorkhani, Hamed
    Seddighi, Sadegh
    [J]. ENERGY, 2019, 168 : 847 - 857
  • [2] AspenTechnology, 2022, Aspen HYSYS Thermodynamics (Version 12)
  • [3] Recent advances in carbon dioxide capture for process intensification
    Buckingham, John
    Reina, Tomas Ramirez
    Duyar, Melis S.
    [J]. CARBON CAPTURE SCIENCE & TECHNOLOGY, 2022, 2
  • [4] Douville H, 2022, PLOS WATER, V1, DOI 10.1371/journal.pwat.0000058
  • [5] Review of Cryogenic Carbon Capture Innovations and Their Potential Applications
    Font-Palma, Carolina
    Cann, David
    Udemu, Chinonyelum
    [J]. C-JOURNAL OF CARBON RESEARCH, 2021, 7 (03):
  • [6] CO2 EOR WITH IN-SITU CO2 CAPTURE, A NEUQUINA BASIN OXYCOMBUSTION CASE STUDY
    Gonzalo, Gallo
    Raul, Puliti
    Rodolfo, Torres
    Eleonora, Erdmann-E
    [J]. CT&F-CIENCIA TECNOLOGIA Y FUTURO, 2020, 10 (02): : 39 - 47
  • [7] Cryogenic CO2 Capture in Natural Gas
    Hart, Allan
    Gnanendran, Nimalan
    [J]. GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 697 - 706
  • [8] Simulation and energy analysis of CO2 capture from CO2-EOR extraction gas using cryogenic fractionation
    Liu, Bingcheng
    Zhang, Mengmeng
    Yang, Xuan
    Wang, Ting
    [J]. JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2019, 103 : 67 - 74
  • [9] Martinez M., 2013, Endulzamiento de Gas Natural. Ingenieria de gas y aplicaciones
  • [10] CO2 capturing, thermo-kinetic principles, synthesis and amine functionalization of covalent organic polymers for CO2 separation from natural gas: A review
    Mukhtar, Ahmad
    Saqib, Sidra
    Mellon, Nurhayati Binti
    Babar, Muhammad
    Rafiq, Sikander
    Ullah, Sami
    Bustam, Mohamad Azmi
    Al-Sehemi, Abdullah G.
    Muhammad, Nawshad
    Chawla, Muhammad
    [J]. JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 77