Enhancing electrochemical performance of O3-Type NaNi0.4Fe0.25Mn0.35O2 cathode materials in sodium-ion batteries via high-entropy strategy

被引:0
作者
Guac, Doh Young [1 ,2 ]
Jung, Hyun Wook [2 ]
Kim, Sang-Ok [1 ,3 ]
机构
[1] Korea Inst Sci & Technol, Energy Storage Res Ctr, 5,Hwarang Ro 14-gil, Seoul 02792, South Korea
[2] Korea Univ, Dept Chem & Biol Engn, 145 Anam Ro, Seoul 02841, South Korea
[3] Korea Univ Sci & Technol, KIST Sch, Div Energy & Environm Technol, 5,Hwarang Ro 14-gil, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
Layered oxides; High-entropy materials; Structural stability; Cathodes; Sodium-ion batteries; FE; CHALLENGES; LITHIUM; PHASE; MN;
D O I
10.1016/j.cej.2025.161145
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sodium-ion battery (SIB) cathodes with an O3-type layered structure exhibit promising theoretical capacity and affordability. However, their poor cycling stability, caused by undesired phase transitions and structural instability during cycling, limits their practical application. To overcome these challenges, we implement a highentropy strategy by incorporating Cu2+, Al3+, and Ti4+ ions into the pristine NaNi0.4Fe0.25Mn0.35O2 (NFM) structure, creating a new high-entropy NaNi0.3Fe0.1Mn0.3Cu0.1Al0.05Ti0.15O2 (NFMCAT) cathode. Electrochemical tests show that NFMCAT achieves a first discharge capacity of 134.6 mAh g-1 at 0.1C, retaining 88% of its capacity after 200 cycles at 2C. Improved Na+ diffusion dynamics are demonstrated through GITT, CV, and EIS analyses. Additionally, in situ X-ray diffraction confirms reduced lattice strain during phase transitions. Full-cell evaluations using a hard carbon anode showcase excellent rate capability and durability, retaining approximately 73.2% of its capacity after 500 cycles at 2C. This research highlights the potential of high-entropy modification for developing stable, high-performance cathode materials to enhance the performance of SIBs.
引用
收藏
页数:11
相关论文
共 56 条
  • [31] Guo S., Liu C.T., Phase stability in high entropy alloys: formation of solid-solution phase or amorphous phase, Prog. Nat. Sci. Mater. Int., 21, pp. 433-446, (2011)
  • [32] Wang H., Gao X., Zhang S., Mei Y., Ni L., Gao J., Et al., High-entropy Na-deficient layered oxides for sodium-ion batteries, ACS Nano, 17, pp. 12530-12543, (2023)
  • [33] Wang X.Z., Zuo Y., Qin Y., Zhu X., Xu S.W., Guo Y.J., Et al., Fast Na<sup>+</sup> kinetics and suppressed voltage hysteresis enabled by a high-entropy strategy for sodium oxide cathodes, Adv. Mater., 36, (2024)
  • [34] Gao M.C., Yeh J.W., (2016)
  • [35] Tomboc G.M., Zhang X., Choi S., Kim D., Lee L.Y., Lee K., Stabilization, characterization, and electrochemical applications of high-entropy oxides: Critical assessment of crystal phase–properties relationship, Adv. Funct. Materials., 32, (2022)
  • [36] Zou L., Li J., Liu Z., Wang G., Manthiram A., Wang C., Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability, Nat. Commun., 10, (2019)
  • [37] Ghosh A., Hegde R., Senguttuvan P., A high entropy O3-Na<sub>1.0</sub>Li<sub>0.1</sub>Ni<sub>0.3</sub>Fe<sub>0.1</sub>Mn<sub>0.25</sub>Ti<sub>0.25</sub>O<sub>2</sub> cathode with reversible phase transitions and superior electrochemical performances for sodium-ion batteries, J. Mater. Chem. A., 12, pp. 14583-14594, (2024)
  • [38] Dang Y., Xu Z., Yang H., Tian K., Wang Z., Zheng R., Et al., Designing water/air-stable Co-free high-entropy oxide cathodes with suppressed irreversible phase transition for sodium-ion batteries, Appl. Surf. Sci., 636, (2023)
  • [39] Liu X., Wan Y., Jia M., Zhang H., Xie W., Hu H., Et al., Facilitating the high voltage stability of NFM via transition metal slabs high-entropy configuration strategy, Energy Storage Mater., 67, (2024)
  • [40] Tian K., He H., Li X., Wang D., Wang Z., Zheng R., Et al., Boosting electrochemical reaction and suppressing phase transition with a high-entropy O3-type layered oxide for sodium-ion batteries, J. Mater. Chem a., 10, pp. 14943-14953, (2022)