Diagnostic performance of deep learning-based coronary computed tomography angiography in detecting coronary artery stenosis

被引:1
作者
Chen, Yang [1 ]
Yu, Hong [2 ]
Fan, Bin [3 ]
Wang, Yong [4 ]
Wen, Zhibo [5 ]
Hou, Zhihui [1 ]
Yu, Jihong [1 ]
Wang, Haiping [1 ]
Tang, Zhe [6 ]
Li, Ning [6 ]
Jiang, Peng [6 ]
Wang, Yang [7 ,8 ]
Yin, Weihua [1 ]
Lu, Bin [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, State Key Lab & Natl Ctr Cardiovasc Dis, Natl Ctr Cardiovasc Dis,Dept Radiol, 167 Bei Li Shi St, Beijing 100037, Peoples R China
[2] Zunyi Med Univ, Affiliated Hosp, Med Imaging Ctr Guizhou Prov, Dept Radiol, Zunyi, Guizhou, Peoples R China
[3] Huanggang Cent Hosp, Dept Radiol, Huanggang, Hubei, Peoples R China
[4] Hebei Med Univ, Dept Radiol & Nucl Med, Hosp 1, 89 Donggang Rd, Shijiazhuang, Hebei, Peoples R China
[5] Southern Med Univ, Zhujiang Hosp, Dept Radiol, Guangzhou, Peoples R China
[6] Keya Med Technol Co Ltd, Beijing, Peoples R China
[7] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Natl Ctr Cardiovasc Dis, Dept Med Res, Beijing, Peoples R China
[8] Chinese Acad Med Sci & Peking Union Med Coll, Fuwai Hosp, Biometr Ctr, Natl Ctr Cardiovasc Dis,State Key Lab Cardiovasc D, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Coronary computed tomography angiography; Deep learning; Coronary artery disease; Artificial intelligence; SOCIETY; SCCT;
D O I
10.1007/s10554-025-03383-0
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Purpose To validate a fully automated, deep learning model based on coronary computed tomography angiography (CCTA) for the diagnosis of obstructive coronary artery disease (CAD) with stenosis >= 50%, which is commonly used as a clinical threshold for further testing and management. This model aims to improve diagnostic efficiency by automating the identification of significant coronary stenosis(>= 50%). Methods This multicenter clinical trial included patients been undergone CCTA from October 13, 2022, to February 28, 2023. CCTA data from suspected coronary artery disease (CAD) patients were retrospectively analyzed using deep learning-based software for comprehensive assessment, including coronary segmentation, lumen, and stenosis determination with comparison to the reference standard of consensus by three experts. This study utilized a multi-stage deep learning framework for coronary artery segmentation and stenosis analysis from CCTA images, consisting of several key components, including the 3D Multi-resolution Cascade Convolutional Neural Network (CNN), 3D Cascade-Locally Optimized Network, and Stenosis Analysis Network. The clinical trial registry number was NCT06172985. Results A total of 1090 patients (mean age: 59.90 +/- 11.51 years, 47.3% female) were included in this multicenter study. Artificial intelligence (AI) demonstrated excellent performance at the patient level, accurately diagnosing >= 50% stenosis by assessing each patient's coronary artery condition. The AI system showed high values for accuracy, sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). The values of the above statistics were 92.8%, 95.3%, 91.4%, 85.6%, and 97.3%, respectively. Excellent agreement was seen between expert readers and deep learning-determined maximal diameter stenosis for per-patient (kappa coefficients: 0.84, 95%CI: 0.81-0.88). Regarding diagnostic efficiency, comparing the AI with expert readers, the average reading time decreased from 5.94 min to 2.01 min (p < 0.001). Conclusion A novel AI-based assessment of CCTA can accurately and rapidly identify patients with coronary artery stenosis >= 50%, aiding in effective triage within the defined study population.
引用
收藏
页码:979 / 989
页数:11
相关论文
共 30 条
[1]   SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the society of Cardiovascular Computed Tomography Guidelines Committee Endorsed by the North American Society for Cardiovascular Imaging (NASCI) [J].
Abbara, Suhny ;
Blanke, Philipp ;
Maroules, Christopher D. ;
Cheezum, Michael ;
Choi, Andrew D. ;
Han, B. Kelly ;
Marwan, Mohamed ;
Naoum, Chris ;
Norgaard, Bjarne L. ;
Rubinshtein, Ronen ;
Schoenhagen, Paul ;
Villines, Todd ;
Leipsic, Jonathon .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2016, 10 (06) :435-449
[2]   Clinical applications of machine learning in cardiovascular disease and its relevance to cardiac imaging [J].
Al'Aref, Subhi J. ;
Anchouche, Khalil ;
Singh, Gurpreet ;
Slomka, Piotr J. ;
Kolli, Kranthi K. ;
Kumar, Amit ;
Pandey, Mohit ;
Maliakal, Gabriel ;
van Rosendael, Alexander R. ;
Beecy, Ashley N. ;
Berman, Daniel S. ;
Leipsic, Jonathan ;
Nieman, Koen ;
Andreini, Daniele ;
Pontone, Gianluca ;
Schoepf, U. Joseph ;
Shaw, Leslee J. ;
Chang, Hyuk-Jae ;
Narula, Jagat ;
Bax, Jeroen J. ;
Guan, Yuanfang ;
Min, James K. .
EUROPEAN HEART JOURNAL, 2019, 40 (24) :1975-+
[3]   Artificial intelligence in cardiac computed tomography [J].
Aromiwura, Afolasayo A. ;
Settle, Tyler ;
Joshi, Jonathan ;
Shotwell, Matthew ;
Mattumpuram, Jishanth ;
Vorla, Mounica ;
Sztukowska, Maryta ;
Contractor, Sohail ;
Amini, Amir ;
Kalra, Dinesh K. .
PROGRESS IN CARDIOVASCULAR DISEASES, 2023, 81 :54-77
[4]   Validation of deep-learning image reconstruction for coronary computed tomography angiography: Impact on noise, image quality and diagnostic accuracy [J].
Benz, Dominik C. ;
Benetos, Georgios ;
Rampidis, Georgios ;
von Felten, Elia ;
Bakula, Adam ;
Sustar, Aleksandra ;
Kudura, Ken ;
Messerli, Michael ;
Fuchs, Tobias A. ;
Gebhard, Catherine ;
Pazhenkottil, Aju P. ;
Kaufmann, Philipp A. ;
Buechel, Ronny R. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2020, 14 (05) :444-451
[5]   CT Evaluation by Artificial Intelligence for Atherosclerosis, Stenosis and Vascular Morphology (CLARIFY): A Multi-center, international study [J].
Choi, Andrew D. ;
Marques, Hugo ;
Kumar, Vishak ;
Griffin, William F. ;
Rahban, Habib ;
Karlsberg, Ronald P. ;
Zeman, Robert K. ;
Katz, Richard J. ;
Earls, James P. .
JOURNAL OF CARDIOVASCULAR COMPUTED TOMOGRAPHY, 2021, 15 (06) :470-476
[6]  
Cury RC, 2022, J AM COLL RADIOL, V19, P1185, DOI [10.1016/j.jcct.2022.07.002, 10.1016/j.jacr.2022.09.012]
[7]   Automated coronary calcium scoring using deep learning with multicenter external validation [J].
Eng, David ;
Chute, Christopher ;
Khandwala, Nishith ;
Rajpurkar, Pranav ;
Long, Jin ;
Shleifer, Sam ;
Khalaf, Mohamed H. ;
Sandhu, Alexander T. ;
Rodriguez, Fatima ;
Maron, David J. ;
Seyyedi, Saeed ;
Marin, Daniele ;
Golub, Ilana ;
Budoff, Matthew ;
Kitamura, Felipe ;
Takahashi, Marcelo Straus ;
Filice, Ross W. ;
Shah, Rajesh ;
Mongan, John ;
Kallianos, Kimberly ;
Langlotz, Curtis P. ;
Lungren, Matthew P. ;
Ng, Andrew Y. ;
Patel, Bhavik N. .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[8]   Deep Learning for Head and Neck CT Angiography: Stenosis and Plaque Classification [J].
Fu, Fan ;
Shan, Yi ;
Yang, Guang ;
Zheng, Chao ;
Zhang, Miao ;
Rong, Dongdong ;
Wang, Ximing ;
Lu, Jie .
RADIOLOGY, 2023, 307 (03)
[9]   AI Evaluation of Stenosis on Coronary CTA, Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve A CREDENCE Trial Substudy [J].
Griffin, William F. ;
Choi, Andrew D. ;
Riess, Joanna S. ;
Marques, Hugo ;
Chang, Hyuk-Jae ;
Choi, Jung Hyun ;
Doh, Joon-Hyung ;
Her, Ae-Young ;
Koo, Bon-Kwon ;
Nam, Chang-Wook ;
Park, Hyung-Bok ;
Shin, Sang-Hoon ;
Cole, Jason ;
Gimelli, Alessia ;
Khan, Muhammad Akram ;
Lu, Bin ;
Gao, Yang ;
Nabi, Faisal ;
Nakazato, Ryo ;
Schoepf, U. Joseph ;
Driessen, Roel S. ;
Bom, Michiel J. ;
Thompson, Randall ;
Jang, James J. ;
Ridner, Michael ;
Rowan, Chris ;
Avelar, Erick ;
Genereux, Philippe ;
Knaapen, Paul ;
de Waard, Guus A. ;
Pontone, Gianluca ;
Andreini, Daniele ;
Earls, James P. .
JACC-CARDIOVASCULAR IMAGING, 2023, 16 (02) :193-205
[10]   Artificial intelligence stenosis diagnosis in coronary CTA: effect on the performance and consistency of readers with less cardiovascular experience [J].
Han, Xianjun ;
Luo, Nan ;
Xu, Lixue ;
Cao, Jiaxin ;
Guo, Ning ;
He, Yi ;
Hong, Min ;
Jia, Xibin ;
Wang, Zhenchang ;
Yang, Zhenghan .
BMC MEDICAL IMAGING, 2022, 22 (01)