Prediction model of Burn-through Point based on GA-BP

被引:0
作者
Liu, Xiaojie [1 ]
Li, Yifan [1 ]
Li, Xin [1 ]
Li, Hongwei [1 ]
Li, Hongyang [1 ]
Chen, Shujun [2 ]
机构
[1] North China Univ Sci & Technol, Sch Met & Energy, Tangshan, Peoples R China
[2] HBIS Grp Co Ltd, Chengde Branch, Chengde, Peoples R China
来源
39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024 | 2024年
关键词
sintering end point; genetic algorithms; BP neural network; Model prediction;
D O I
10.1109/YAC63405.2024.10598637
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
As one of the important links in the traditional long process steel production process, the sinter yield and quality of the sintering process directly affect the efficiency of ironmaking production. As an important index to detect the sintering production status, the sintering end point is very important for optimizing the production process and improving the product quality. Predicting the sintering end point can help the production planning and scheduling work, and make the production process more orderly and efficient. Accurate endpoint prediction helps to optimize production schedules and ensure the right raw materials and energy inputs to meet the quality requirements of a specific products. A prediction model of BTP based on GA-BP was proposed in this paper. Based on the production data of an iron and steel enterprise, the anomalies in the production data were processed Then the genetic algorithm (GA) was used to set the initial value and threshold of the neural network (BP), and a GA-BP prediction model was designed The results show that the prediction accuracy of the GA-BP model for the sintering end point can reach more than 95 %. The sintering prediction ability is further optimized, which effectively suppresses the fluctuation of the sintering end point, improves the calculation accuracy of the sintering end point, assists the field staff to adjust the operating parameters in advance, and stabilizes the sintering production. It has important theoretical significance and practical value in production practice.
引用
收藏
页码:1293 / 1298
页数:6
相关论文
共 14 条
  • [1] Observations of the Cabibbo-Suppressed decays Λc+ → nπ+ π0, nπ+ π- π+ and the Cabibbo-Favored decay Λc+ → nK- π+ π+*
    Ablikim, M.
    Achasov, M. N.
    Adlarson, P.
    Albrecht, M.
    Aliberti, R.
    Amoroso, A.
    An, M. R.
    An, Q.
    Bai, Y.
    Bakina, O.
    Ferroli, R. Baldini
    Balossino, I
    Ban, Y.
    Batozskaya, V
    Becker, D.
    Begzsuren, K.
    Berger, N.
    Bertani, M.
    Bettoni, D.
    Bianchi, F.
    Bianco, E.
    Bloms, J.
    Bortone, A.
    Boyko, I
    Briere, R. A.
    Brueggemann, A.
    Cai, H.
    Cai, X.
    Calcaterra, A.
    Cao, G. F.
    Cao, N.
    Cetin, S. A.
    Chang, J. F.
    Chang, W. L.
    Che, G. R.
    Chelkov, G.
    Chen, C.
    Chen, Chao
    Chen, G.
    Chen, H. S.
    Chen, M. L.
    Chen, S. J.
    Chen, S. M.
    Chen, T.
    Chen, X. R.
    Chen, X. T.
    Chen, Y. B.
    Chen, Z. J.
    Cheng, W. S.
    Choi, S. K.
    [J]. CHINESE PHYSICS C, 2023, 47 (02)
  • [2] Deep Learning Assisted Imaging Methods to Facilitate Access to Ophthalmic Telepathology
    Browne, Andrew W.
    Kim, Geunwoo
    Vu, Anderson N.
    To, Josiah K.
    Minckler, Don S.
    Del Valle Estopinal, Maria
    Rao, Narsing A.
    Curcio, Christine A.
    Baldi, Pierre F.
    [J]. OPHTHALMOLOGY SCIENCE, 2024, 4 (03):
  • [3] [陈少飞 Chen Shaofei], 2021, [钢铁研究学报, Journal of Iron and Steel Research], V33, P467
  • [4] Chen X W, 2006, Sintered Pellet, V04, P21
  • [5] Inference of immune cell composition on the expression profiles of mouse tissue
    Chen, Ziyi
    Huang, Anfei
    Sun, Jiya
    Jiang, Taijiao
    Qin, F. Xiao-Feng
    Wu, Aiping
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [6] Gong II L, 2023, Journal of Beijing fi-istitute of Petrochemical Technology, V31, P47
  • [7] LARGE EARTHQUAKE MAGNITUDE PREDICTION IN TAIWAN BASED ON DEEP LEARNING NEURAL NETWORK
    Huang, J. P.
    Wang, X. A.
    Zhao, Y.
    Xin, C.
    Xiang, H.
    [J]. NEURAL NETWORK WORLD, 2018, 28 (02) : 149 - 160
  • [8] Neural Holography
    Peng, Yifan
    Choi, Suyeon
    Padmanaban, Nitish
    Kim, Jonghyun
    Wetzstein, Gordon
    [J]. ACM SIGGRAPH 2020 EMERGING TECHNOLOGIES, 2020,
  • [9] [汪春鹏 Wang Chunpeng], 2017, [测控技术, Measurement & Control Technology], V36, P86
  • [10] Wang G, 2016, AEROSP CONF PROC, DOI 10.1109/ICSSSM.2016.7538573