A robust source-free unsupervised domain adaptation method based on uncertainty measure and adaptive calibration for rotating machinery fault diagnosis

被引:0
|
作者
Lin, Yanzhuo [1 ]
Wang, Yu [1 ]
Zhang, Mingquan [1 ]
Zhao, Ming [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mfg & Syst Engn, Xian 710049, Peoples R China
基金
中国国家自然科学基金;
关键词
Intelligent fault diagnosis; Source-free unsupervised domain adaptation; Uncertainty measure; Transfer learning; Rotating machinery;
D O I
10.1016/j.ress.2024.110516
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Unsupervised domain adaptation (UDA), usually trained jointly with labeled source data and unlabeled target data, is widely used to address the problem of lack of labeled data for new operating conditions of rotating machinery. However, due to the expensive storage costs and growing concern about data privacy, source-domain data are often not available, leading to the inapplicability of UDA. How to perform domain adaptation in scenarios without access to the source data has become an urgent problem to be solved. To this end, we propose a robust source-free unsupervised domain adaptation method based on uncertainty measure and adaptive calibration for fault diagnosis. The method only requires the use of the lightweight source model and unlabeled target data, which provides a new possibility to deploy domain adaptation models on resource-limited devices with good protection of data privacy. Specifically, based on proposed channel-level and instance-level uncertainty measures, adaptive calibration of source-domain model knowledge and target-domain risk samples during domain transfer is performed to attenuate the effect of negative transfer. Then, entropy minimization and targetdomain diversity loss are introduced to redistribute the target samples and realize domain adaptation. Extensive cross-domain diagnostic experiments on two datasets demonstrate the effectiveness of the proposed method.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Rotating machinery fault detection and diagnosis based on deep domain adaptation: A survey
    Siyu ZHANG
    Lei SU
    Jiefei GU
    Ke LI
    Lang ZHOU
    Michael PECHT
    Chinese Journal of Aeronautics , 2023, (01) : 45 - 74
  • [22] Instance Weighting-Based Partial Domain Adaptation for Intelligent Fault Diagnosis of Rotating Machinery
    Li, Yuqing
    Dong, Yunjia
    Xu, Minqiang
    Liu, Pengpeng
    Wang, Rixin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [23] Deep Reinforcement Learning-Based Online Domain Adaptation Method for Fault Diagnosis of Rotating Machinery
    Li, Guoqiang
    Wu, Jun
    Deng, Chao
    Xu, Xuebing
    Shao, Xinyu
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (05) : 2796 - 2805
  • [24] An unsupervised intelligent fault diagnosis research for rotating machinery based on NND-SAM method
    Zhang, Haifeng
    Zou, Fengqian
    Sang, Shengtian
    Li, Yuqing
    Li, Xiaoming
    Hu, Kongzhi
    Chen, Yufeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (03)
  • [25] Partial Domain Adaptation Method Based on Class-Weighted Alignment for Fault Diagnosis of Rotating Machinery
    Zhang, Xiao
    Wang, Jinrui
    Jia, Sixiang
    Han, Baokun
    Zhang, Zongzhen
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [26] Interpretable domain adaptation transformer: a transfer learning method for fault diagnosis of rotating machinery
    Liu, Dongdong
    Cui, Lingli
    Wang, Gang
    Cheng, Weidong
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2025, 24 (02): : 1187 - 1200
  • [27] Source-Free Progressive Domain Adaptation Network for Universal Cross-Domain Fault Diagnosis of Industrial Equipment
    Li, Jipu
    Yue, Ke
    Wu, Zhaoqian
    Jiang, Fei
    Zhong, Zhi
    Li, Weihua
    Zhang, Shaohui
    IEEE SENSORS JOURNAL, 2025, 25 (05) : 8067 - 8078
  • [28] Unsupervised Method Based on Adversarial Domain Adaptation for Bearing Fault Diagnosis
    Li, Yao
    Yang, Rui
    Wang, Hongshu
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [29] Generation, augmentation, and alignment: a pseudo-source domain based method for source-free domain adaptation
    Yuntao Du
    Haiyang Yang
    Mingcai Chen
    Hongtao Luo
    Juan Jiang
    Yi Xin
    Chongjun Wang
    Machine Learning, 2024, 113 : 3611 - 3631
  • [30] Source-Free Black-Box Adaptation for Machine Fault Diagnosis
    Jiao, Jinyang
    Zhang, Tian
    Li, Hao
    Liu, Hanyang
    Lin, Jing
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2025,