Resampling video super-resolution based on multi-scale guided optical flow

被引:0
|
作者
Li, Puying [1 ]
Zhu, Fuzhen [1 ]
Liu, Yong [1 ]
Zhang, Qi [1 ]
机构
[1] Heilongjiang Univ, Sch Elect Engn, Harbin 150080, Peoples R China
关键词
Video super-resolution; Transformer; Multi-scale adaptive flow estimation; Resampling; NETWORKS;
D O I
10.1016/j.compeleceng.2025.110176
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Existing video super-resolution (VSR) methods are inadequate for dealing with inter-frame motion and spatial distortion problems, especially in high-motion scenes, which tend to lead to loss of details and degradation of reconstruction quality. To address these challenges, this paper puts forward a resampling video super-resolution algorithm based on multiscale guided optical flow. The method combines multi-scale guided optical flow estimation to address the issue of interframe motion and a resampling deformable convolution module to address the issue of spatial distortion. Specifically, features are first extracted from low-quality video frames using a convolutional layer, followed by feature extraction with Residual Swin Transformer Blocks (RSTBs). In the feature alignment module, a multiscale-guided optical flow estimation approach is employed, which addresses the inter-frame motion problem across different video segments and performs video frame interpolation and super-resolution reconstruction simultaneously. Furthermore, spatial alignment is achieved by integrating resampling into the deformable convolution module, mitigating spatial distortion. Finally, multiple Residual Swin Transformer Blocks (RSTBs) are used to extract and fuse features, and pixel rearrangement layers are employed to reconstruct high-quality video frames. The experimental results on the REDS, Vid4, and UDM10 datasets show that our method significantly outperforms current state-of-the-art (SOTA) techniques, with improvements of 0.61 dB in Peak Signal-to-Noise Ratio (PSNR) and 0.0121 in Structural Similarity (SSIM), validating the effectiveness and superiority of the method.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] A multi-scale hybrid attention Swin-transformer-based model for the super-resolution reconstruction of turbulence
    Liu, Xiuyan
    Zhang, Yufei
    Guo, Tingting
    Li, Xinyu
    Song, Dalei
    Yang, Hua
    NONLINEAR DYNAMICS, 2025, : 15815 - 15844
  • [32] Joint face completion and super-resolution using multi-scale feature relation learning?
    Liu, Zhilei
    Zhang, Chenggong
    Wu, Yunpeng
    Zhang, Cuicui
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2023, 93
  • [33] A 'deep' review of video super-resolution
    Gopalakrishnan, Subhadra
    Choudhury, Anustup
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2024, 129
  • [34] Mixed multi-scale residual attention networks for single image super-resolution reconstruction
    Zhang, Liyun
    Zhang, Ming
    Fan, Fei
    Liu, Yang
    MULTIMEDIA SYSTEMS, 2025, 31 (03)
  • [35] Remote Sensing Image Super-Resolution via Multi-Scale Texture Transfer Network
    Wang, Yu
    Shao, Zhenfeng
    Lu, Tao
    Huang, Xiao
    Wang, Jiaming
    Chen, Xitong
    Huang, Haiyan
    Zuo, Xiaolong
    REMOTE SENSING, 2023, 15 (23)
  • [36] Multi-Level Alignments for Compressed Video Super-Resolution
    Wei, Liu
    Ye, Mao
    Ji, Luping
    Gan, Yan
    Li, Shuai
    Li, Xue
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (03) : 5101 - 5114
  • [37] High-Resolution Projection Network combining High-Resolution Optical Flow Compensation for Video Super-Resolution
    Sun, Yifei
    Chen, Zhengxia
    Jin, Yuying
    Feng, Xiaoyi
    2024 3RD INTERNATIONAL CONFERENCE ON IMAGE PROCESSING AND MEDIA COMPUTING, ICIPMC 2024, 2024, : 234 - 238
  • [38] Deformable transformer for endoscopic video super-resolution
    Song, Xiaowei
    Tang, Hui
    Yang, Chunfeng
    Zhou, Guangquan
    Wang, Yangang
    Huang, Xinjun
    Hua, Jie
    Coatrieux, Gouenou
    He, Xiaopu
    Chen, Yang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 77
  • [39] Video super-resolution network using detail component extraction and optical flow enhancement algorithm
    Chen, Zhensen
    Yang, Wenyuan
    Yang, Jingmin
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10234 - 10246
  • [40] Video super-resolution network using detail component extraction and optical flow enhancement algorithm
    Zhensen Chen
    Wenyuan Yang
    Jingmin Yang
    Applied Intelligence, 2022, 52 : 10234 - 10246